二叉树遍历 - 九度教程第32题
题目:
时间限制:1 秒 内存限制:32 兆 特殊判题:否
题目描述:
二叉树的前序、中序、后序遍历的定义:
前序遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树;
中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树;
后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。
给定一棵二叉树的前序遍历和中序遍历,求其后序遍历(提示:给定前序遍历与中序遍历能够唯一确定后序遍历)。
输入:
两个字符串,其长度n均小于等于26。
第一行为前序遍历,第二行为中序遍历。二叉树中的结点名称以大写字母表示:A,B,C…最多26个结点。
输出:
输入样例可能有多组,对于每组测试样例,输出一行,为后序遍历的字符串。
样例输入:
ABC
BAC
FDXEAG
XDEFAG
样例输出:
BCA
XEDGAF
来源:
2006年清华大学计算机研究生机试真题
解析:
该例题涉及二叉树建立、由二叉树的两种遍历结果还原二叉树、二叉树的遍历等多种知识点。我们以分析该例题为分析,家烧关于二叉树各知识点。
由该例要求,首先需要根据给定的二叉树前序和中序遍历结果还原该二叉树。其次,需要将还原的二叉树以二叉树的形式保存在内存中。最后,需要对建立的二叉树进行后序遍历。
还需将还原出来的树保存在内存中。使用结构体Node表示树的一个结点,其字符信息保存在字符变量c,若该结点存在左儿子或者右儿子,则指向它们的指针保存在lchild或rchild中,否则该指针为空。
代码:
#include<stdio.h>
#include<string.h> //strlen函数头文件
struct Node{ //树结点结构体
Node *lchild; //左儿子指针
Node *rchild; //右儿子指针
char c; //结点字符信息
}Tree[50]; //静态内存分配数组
int loc; //静态数组中已经分配的结点个数
Node *creat() //申请一个结点空间,返回指向其的指针
{
Tree[loc].lchild=Tree[loc].rchild=NULL;//初始化左右儿子为空
return &Tree[loc++];//返回指针,且loc累加
}
char str1[30],str2[30];//保存前序和中序遍历结果字符串
void postOrder(Node *T)//后序遍历
{
if(T->lchild!=NULL)//若左子树不为空
{
postOrder(T->lchild);//递归遍历其左子树
}
if(T->rchild!=NULL)//若右子树不为空
{
postOrder(T->rchild);//遍历递归其右子树
}
printf("%c",T->c);//遍历该结点,输出其字符信息
}
Node *build(int s1,int e1,int s2,int e2)
{ //由字符串的前序遍历和中序遍历还原树,并返回其根结点,其中前序遍历结果为
//str1[s1]和str1[e1],中序遍历结果为str2[s2]和str2[e2]
Node* ret=creat(); //为该树根结点申请空间
ret->c=str1[s1]; //该结点字符为前序遍历中第一个字符
int rootIdx;
for(int i=s2;i<=e2;i++)//查找该根结点字符在中序遍历中的位置
{
if(str2[i]==str1[s1])
{
rootIdx=i;
break;
}
}
if(rootIdx!=s2) //若左子树不为空
{
ret->lchild=build(s1+1,s1+(rootIdx-s2),s2,rootIdx-1);
//递归还原其左子树
}
if(rootIdx!=e2) //若右子树不为空
{
ret->rchild=build(s1+(rootIdx-s2)+1,e1,rootIdx+1,e2);
//返回根结点指针
}
return ret; //返回根结点指针
}
int main()
{
while(scanf("%s",str1)!=EOF)
{
scanf("%s",str2); //输入
loc=0;
int L1=strlen(str1);
int L2=strlen(str2); //计算两个字符串长度
Node *T=build(0,L1-1,0,L2-1);//还原整棵树,其根结点指针保存在T中
postOrder(T); //后序遍历
printf("\n"); //输出换行
}
return 0;
}