TPAMI 2025 | 一器多用:基于单一样式生成对抗网络实现通用领域转换

论文信息

题目:One-for-All: Towards Universal Domain Translation with a Single StyleGAN
一器多用:基于单一样式生成对抗网络实现通用领域转换
作者:Yong Du, Jiahui Zhan, Xinzhe Li, Junyu Dong, Sheng Chen, Ming-Hsuan Yang, Shengfeng He

论文创新点

  1. 提出通用视觉域翻译模型UniTranslator:该模型利用CLIP的领域中立能力作为桥梁机制,可实现从任意现实世界源域到指定目标域的无缝转换,且仅需单个源图像,突破了传统模型对大量训练数据和特定源、目标域识别的依赖,拓展了视觉域翻译的通用性边界。
  2. 设计解耦模块:通过整合与源图像和目标域相关的描述性提示,利用CLIP的语言 - 图像对齐能力,提取抽象的、与领域无关的语义,并将其
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值