论文信息
题目:One-for-All: Towards Universal Domain Translation with a Single StyleGAN
一器多用:基于单一样式生成对抗网络实现通用领域转换
作者:Yong Du, Jiahui Zhan, Xinzhe Li, Junyu Dong, Sheng Chen, Ming-Hsuan Yang, Shengfeng He
论文创新点
- 提出通用视觉域翻译模型UniTranslator:该模型利用CLIP的领域中立能力作为桥梁机制,可实现从任意现实世界源域到指定目标域的无缝转换,且仅需单个源图像,突破了传统模型对大量训练数据和特定源、目标域识别的依赖,拓展了视觉域翻译的通用性边界。
- 设计解耦模块:通过整合与源图像和目标域相关的描述性提示,利用CLIP的语言 - 图像对齐能力,提取抽象的、与领域无关的语义,并将其