传送门
题意:
有一个长度为 n n n的数列的未知数列,数列的每一个数的值都在区间 [ l , r ] [l,r] [l,r]的范围内。现在问你能够构成多少个这样的数组,使得数组内的所有数的和能够被 3 3 3整除。
题目分析:
在这个题中,我们不能纠结在具体的数值的变化,我们需要关注数量的变化。
首先,涉及到这类整除性的问题,我们需要将它转化成余数的问题。那么我们可以发现,这些数的余数只会在 [ 0 , 2 ] [0,2] [0,2]的范围之间变化,因此我们只需分别考虑这三种情况。
我们考虑这样一个问题。如果一个数 x x x能够被 3 3 3整除,则我们设 x = 3 k x=3k x=3k。而因为 l ≤ x ≤ r l\le x \le r l≤x≤r,则我们有 l 3 ≤ k ≤ r 3 \frac{l}{3}\le k\le \frac{r}{3} 3l≤k≤3r。则易得,能被 3 3 3整除的数的个数为: r 3 − l 3 \frac{r}{3}-\frac{l}{3} 3r−3l。
同理有,模 3 3 3余 1 1 1的个数为: r − 1 3 − l − 1 3 \frac{r-1}{3}-\frac{l-1}{3} 3r−1−3l−1
模 3 3 3余 2 2 2的个数为: r − 2 3 − l − 2 3 \frac{r-2}{3}-\frac{l-2}{3} 3r−2−3l−2
得到个数之后,我们就可以用 d p dp dp对答案进行转移。
我们设 d p [ i ] [ j ] dp[i][j] dp[i][j]为数列的前 i i i个数字被取了后,余数为 j j j的方案数, c n t [ i ] cnt[i] cnt[i]为在区间 [ l , r ] [l,r] [l,r]中,模 3 3 3余 i i i的个数。
则我们容易发现,当前的状态,是由前一个状态分别加上余 0 0 0,余 1 1 1,余 2 2 2的方案数转移过来的,即有状态转移方程: d p [ i ] [ j + k ] + = d p [ i − 1 ] [ j ] ∗ c n t [ k ] dp[i][j+k]+=dp[i-1][j]*cnt[k] dp[i][j+k]+=dp[i−1][j]∗cnt[k]。
因此我们可以用 O ( n ) \mathcal{O}(n) O(n)的时间复杂度进行转移,最终的答案即为 d p [ n ] [ 0 ] dp[n][0] dp[n][0]
#include <bits/stdc++.h>
#define maxn 200005
using namespace std;
typedef long long ll;
ll dp[maxn][3];
const int mod=1e9+7;
int main()
{
int n,l,r;
scanf("%d%d%d",&n,&l,&r);
l--;
dp[0][0]=1;
for(int i=0;i<n;i++){
for(int j=0;j<3;j++){
ll w=(r-j+3)/3-(l-j+3)/3;
for(int k=0;k<3;k++){
dp[i+1][(k+j)%3]=(dp[i+1][(k+j)%3]+dp[i][k]*w)%mod;
}
}
}
cout<<dp[n][0]<<endl;
return 0;
}