Codeforces 1105C (dp)

传送门

题意:

有一个长度为 n n n的数列的未知数列,数列的每一个数的值都在区间 [ l , r ] [l,r] [l,r]的范围内。现在问你能够构成多少个这样的数组,使得数组内的所有数的和能够被 3 3 3整除。

题目分析:

在这个题中,我们不能纠结在具体的数值的变化,我们需要关注数量的变化。

首先,涉及到这类整除性的问题,我们需要将它转化成余数的问题。那么我们可以发现,这些数的余数只会在 [ 0 , 2 ] [0,2] [0,2]的范围之间变化,因此我们只需分别考虑这三种情况。

我们考虑这样一个问题。如果一个数 x x x能够被 3 3 3整除,则我们设 x = 3 k x=3k x=3k。而因为 l ≤ x ≤ r l\le x \le r lxr,则我们有 l 3 ≤ k ≤ r 3 \frac{l}{3}\le k\le \frac{r}{3} 3lk3r。则易得,能被 3 3 3整除的数的个数为: r 3 − l 3 \frac{r}{3}-\frac{l}{3} 3r3l

同理有,模 3 3 3 1 1 1的个数为: r − 1 3 − l − 1 3 \frac{r-1}{3}-\frac{l-1}{3} 3r13l1

3 3 3 2 2 2的个数为: r − 2 3 − l − 2 3 \frac{r-2}{3}-\frac{l-2}{3} 3r23l2

得到个数之后,我们就可以用 d p dp dp对答案进行转移。

我们设 d p [ i ] [ j ] dp[i][j] dp[i][j]为数列的前 i i i个数字被取了后,余数为 j j j的方案数, c n t [ i ] cnt[i] cnt[i]为在区间 [ l , r ] [l,r] [l,r]中,模 3 3 3 i i i的个数。

则我们容易发现,当前的状态,是由前一个状态分别加上余 0 0 0,余 1 1 1,余 2 2 2的方案数转移过来的,即有状态转移方程: d p [ i ] [ j + k ] + = d p [ i − 1 ] [ j ] ∗ c n t [ k ] dp[i][j+k]+=dp[i-1][j]*cnt[k] dp[i][j+k]+=dp[i1][j]cnt[k]

因此我们可以用 O ( n ) \mathcal{O}(n) O(n)的时间复杂度进行转移,最终的答案即为 d p [ n ] [ 0 ] dp[n][0] dp[n][0]

#include <bits/stdc++.h>
#define maxn 200005

using namespace std;
typedef long long ll;
ll dp[maxn][3];
const int mod=1e9+7;
int main()
{
    int n,l,r;
    scanf("%d%d%d",&n,&l,&r);
    l--;
    dp[0][0]=1;
    for(int i=0;i<n;i++){
        for(int j=0;j<3;j++){
            ll w=(r-j+3)/3-(l-j+3)/3;
            for(int k=0;k<3;k++){
                dp[i+1][(k+j)%3]=(dp[i+1][(k+j)%3]+dp[i][k]*w)%mod;
            }
        }
    }
    cout<<dp[n][0]<<endl;
    return 0;
}

区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值