非常好!超齐全的故障诊断数据集及相关实验平台介绍

本文概述了多个来源的故障诊断数据集,包括轴承和齿轮箱,涵盖了各种工况、单一故障和复合故障,用于机器学习和迁移学习任务。详细介绍了各数据集的适用场景、样本特征和实验条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

故障诊断数据集目录

一. 故障诊断数据集库介绍

二. 轴承故障诊断数据集

1.美国-凯斯西储大学轴承数据中心轴承数据集

2.SUDA试验台数据集

3.美国-机械故障预防技术学会MFPT

4.德国-帕德伯恩大学Paderborn轴承数据集

5.SDUST山东科技大学数据集

6.SEU东南大学轴承数据集

7.江南大学轴承数据集

8.加拿大-渥太华大学轴承数据集

9.DIRG意大利-都灵理工大学轴承数据集

三. 轴承寿命预测数据集

10.XJTU轴承寿命预测数据集

四. 齿轮箱故障诊断数据集

11.东南大学齿轮箱数据集

12.SUDA齿轮箱故障数据

一.故障诊断数据集库介绍

​ 故障诊断数据集库收集了故障诊断领域常用的轴承及齿轮箱数据集,对应每个数据集,在本篇概述中介绍了数据集的适用的场景 , 数据集采集实验台, 数据集的组成及其包含的样本类别。在数据集库中整理了以下文件 :

  1. 原始数据集
  2. 数据读取及数据预处理API, 及其使用说明
  3. 数据集说明文档
  4. 数据集相关文献

1.凯斯西储轴承数据集CWRU

CWRU轴承数据集适用场景 :

  1. 基础的轴承故障诊断任务
  2. 变工况条件下的迁移学习任务
  3. 仅包含单一故障,不适用于复合故障诊任务
    在这里插入图片描述
    凯斯西储数据集包括四种轴承不同轴承健康状态,即正常状态、内圈故障、外圈故障和滚动体故障。分别有7mils、14mils和21mils三种故障直径(1mils=0.0254mm)。该电动机在0hp、1hp、2hp、3hp四种不同的负载和1730r/min、1750r/min、1772r/min、1797r/min四种不同转速下收集振动信号。
负载 转速 轴承健康状态 故障尺寸
0hp 1797rmp 正常状态、内圈故障、外圈故障、滚动体故障 7mils、14mils、21mils
1hp 1772rmp 正常状态、内圈故障、外圈故障、滚动体故障 7mils、14mils、21mils
2hp 1750rmp 正常状态、内圈故障、外圈故障、滚动体故障 7mils、14mils、21mils
3hp 1730rmp 正常状态、内圈故障、外圈故障、滚动体故障 7mils、14mil
### PU轴承数据集在Matlab中的使用 对于PU轴承的数据集,在Matlab环境中进行读取和初步分析的过程可以分为几个部分来理解。通常情况下,这类数据集会包含时间序列振动信号或其他传感器采集到的信息。 #### 数据获取 为了获得PU轴承的相关数据集,建议访问公开数据库如NASA的 prognostics data repository 或者其他学术机构发布的机械部件健康监测数据集合[^1]。这些资源提供了多种类型的旋转设备故障模拟实验记录,其中包括不同工况下的滚动轴承性能退化历程。 #### 文件导入 假设已经下载了一个CSV格式保存的时间序列文件,则可以通过以下方式将其加载至MATLAB工作区: ```matlab % 设置路径指向存储有目标csv文件的位置 dataPath = 'path_to_your_file'; filename = fullfile(dataPath, 'bearingData.csv'); % 利用readtable函数读入表格形式的数据 dataTable = readtable(filename); % 显示前几行查看结构 head(dataTable); ``` 上述代码片段展示了如何指定本地磁盘上的具体位置并通过`readtable()`命令把外部表格型资料引入内部变量中以便后续处理。 #### 基础统计与可视化 一旦成功载入所需样本之后就可以着手开展简单的探索性数据分析了。下面给出一段用于计算描述统计数据并绘制趋势图的例子: ```matlab % 计算均值、标准差等基本度量指标 summaryStats = varfun(@mean, dataTable(:, 2:end)); disp(summaryStats); % 绘制某列特征随时间变化曲线 figure; plot(dataTable.Time, dataTable.VariableOfInterest); % 将VariableOfInterest替换为实际感兴趣的字段名 title('Time Series Plot of Bearing Vibration'); xlabel('Time (s)'); ylabel('Amplitude'); grid on; ``` 这段脚本先是对除首列外的所有数值属性求平均值得出汇总信息;接着选取特定的一维数组制作折线图表以直观展现该维度在整个观测期内的变化规律。 #### 高级特性提取 针对更深入的研究需求,还可以考虑应用频域变换技术挖掘潜在模式或是构建预测模型评估剩余使用寿命等问题。这往往涉及到更为复杂的算法实现以及额外的专业领域知识支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诊断之家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值