矩阵的奇异值分解

矩阵的奇异值分解

A ∈ R m × n A \in R^{m\times n} ARm×n,则存在正交矩阵 U U U 和 正交矩阵 V V V ,,使得
A = U [ Σ O O O ] V T , Σ = d i a g ( σ 1 , ⋯   , σ r ) , σ i 为 A 的 奇 异 值 A=U\begin{bmatrix} \Sigma & O \\ O &O \end{bmatrix}V^T,\Sigma=diag(\sigma_1,\cdots,\sigma_r),\sigma_i为A的奇异值 A=U[ΣOOO]VT,Σ=diag(σ1,,σr),σiA
证明:(以实域为例,在复数域上是等价的)

设矩阵 A T A A^TA ATA的特征值为 λ 1 ≥ λ 2 ≥ ⋯ ≥ λ r > λ r + 1 = ⋯ = λ n = 0 \lambda_1\geq \lambda_2 \geq\cdots \geq\lambda_r >\lambda_{r+1}=\cdots=\lambda_n=0 λ1λ2λr>λr+1==λn=0,,对应的特征向量为 x 1 , x 2 , ⋯   , x r , x r + 1 , ⋯   , x n x_1,x_2,\cdots,x_r,x_{r+1},\cdots,x_n x1,x2,,xr,xr+1,,xn, 若令 V = ( x 1 , x 2 , ⋯   , x n ) V=(x_1,x_2,\cdots,x_n) V=(x1,x2,,xn),则有
A T A V = V d i a g ( λ 1 , ⋯   , λ n ) = V [ Σ 2 O O O ] A^TAV=Vdiag(\lambda_1,\cdots,\lambda_n)=V\begin{bmatrix} \Sigma^2 &O \\ O & O \end{bmatrix} ATAV=Vdiag(λ1,,λn)=V[Σ2OOO]
其中 Σ = d i a g ( σ 1 , ⋯   , σ n ) \Sigma=diag(\sigma_1,\cdots,\sigma_n) Σ=diag(σ1,,σn)为矩阵A的奇异值,若令 V 1 = ( x 1 , ⋯   , x r ) , V 2 = ( x r + 1 , ⋯   , x n ) V_1=(x_1,\cdots,x_r),V_2=(x_{r+1},\cdots,x_{n}) V1=(x1,,xr),V2=(xr+1,,xn),则
A T A [ V 1 ⋮ V 2 ] = [ V 1 ⋮ V 2 ] [ Σ 2 O O O ] = [ V 1 Σ 2 ⋮ O ] A^TA[V_1 \vdots V_2]=[V_1 \vdots V_2]\begin{bmatrix} \Sigma^2 &O \\ O & O \end{bmatrix}=[V_1 \Sigma^2 \vdots O] ATA[V1V2]=[V1V2][Σ2OOO]=[V1Σ2O]
因此
A T A V 1 = V 1 Σ 2 , A T A V 2 = O ; t h u s ( Σ − 1 ) T V 1 T A T A V 1 Σ − 1 = I r , A V 2 = O A^TAV_1 = V_1 \Sigma^2,A^TAV_2=O;thus\\ (\Sigma^{-1})^T V_1^TA^TAV_1\Sigma^{-1}=I_r,AV_2=O ATAV1=V1Σ2,ATAV2=O;thus(Σ1)TV1TATAV1Σ1=Ir,AV2=O
U 1 = A V 1 Σ − 1 U_1=AV_1\Sigma^{-1} U1=AV1Σ1, 则
U 1 T U 1 = I r U_1^TU_1=I_r U1TU1=Ir
所以 U 1 U_1 U1为酉矩阵,记 U 1 = ( u 1 , ⋯   , u r ) U_1=(u_1,\cdots,u_r) U1=(u1,,ur),补充 U 2 = ( u r + 1 , ⋯   , u m ) U_2=(u_{r+1},\cdots,u_{m}) U2=(ur+1,um),使得 U = [ U 1 ⋮ U 2 ] U=[U_1 \vdots U_2] U=[U1U2] 为空间 C m C^{m} Cm的一组标准正交基。且有
U 2 T U 1 = O U_2^TU_1=O U2TU1=O
根据以上,可得
U H A V = [ U 1 T U 2 T ] [ A V 1 ⋮ A V 2 ] = [ U 1 T A V 1 U 1 T A V 2 U 2 T A V 1 U 2 T A V 2 ] = [ Σ O O O ] U^HAV= \begin{bmatrix} U_1^T\\ U_2^T \end{bmatrix} [AV_1\vdots AV_2]=\begin{bmatrix} U_1^TAV_1 &U_1^TAV_2 \\ U_2^TAV_1 & U_2^TAV_2 \end{bmatrix}=\begin{bmatrix} \Sigma & O \\ O &O \end{bmatrix} UHAV=[U1TU2T][AV1AV2]=[U1TAV1U2TAV1U1TAV2U2TAV2]=[ΣOOO]
因此
A = U [ Σ O O O ] V T A=U\begin{bmatrix} \Sigma & O \\ O &O \end{bmatrix}V^T A=U[ΣOOO]VT

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值