向量的夹角余弦公式_向量法证明余弦定理 (1)证明思路分析 由于余弦定理中涉及到的角是以余弦形式出现.那么可以与哪些向量知识产生联系呢? 向量数量积的定义式:a·b=|a||b|cosθ.其中θ...

向量法证明余弦定理 (1)证明思路分析 由于余弦定理中涉及到的角是以余弦形式出现.那么可以与哪些向量知识产生联系呢? 向量数量积的定义式:a·b=|a||b|cosθ.其中θ为a.b的夹角. 在这一点联系上与向量法证明正弦定理有相似之处.但又有 所区别.首先因为无须进行正.余弦形式的转换.也就省去添加 辅助向量的麻烦.当然.在各边所在向量的联系上依然通过向量加 法的三角形法则.而在数量积的构造上则以两向量夹角为引导. 比如证明形式中含有角C.则构造·这一数量积以使出现cosC.同样在证明过程中应注意两向量夹角是以同起点为前提. (2)向量法证明余弦定理过程: 如图.在△ABC中.设AB.BC.CA的长分别是c.a.b. 由向量加法的三角形法则可得=+. ∴·= =2+2·+2 =||2+2||||cos(180°-B)+||2 =c2-2accosB+a2 即b2=c2+a2-2accosB 由向量减法的三角形法则可得: =- ∴·= =2-2·+2 =||2-2||||cosA+||2 =b2-2bccosA+c2 即a2=b2+c2-2bccosA 由向量加法的三角形法则可得 =+=- ∴·= =2-2·+2 =||2-2||||cosC+||2 =b2-2bacosC+a2. 即c2=a2+b2-2abcosC 评述:(1)上述证明过程中应注意正确运用向量加法的三角形法则. (2)在证明过程中应强调学生注意的是两向量夹角的确定.与属于同起点向量.则夹角为A,与是首尾相接.则夹角为角B的补角180°-B,与是同终点.则夹角仍是角C. 在证明了余弦定理之后.我们来进一步学习余弦定理的应用. 利用余弦定理.我们可以解决以下两类有关三角形的问题: (1)已知三边.求三个角. 这类问题由于三边确定.故三角也确定.解唯一, (2)已知两边和它们的夹角.求第三边和其他两个角. 这类问题第三边确定.因而其他两个角唯一.故解唯一.不会产生类似利用正弦定理解三角形所产生的判断取舍等问题. 接下来.我们通过例题评析来进一步体会与总结.【查看更多】

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值