pytorch统计矩阵非0的个数_计算TensorFlow中非零元素的个数

本文详细介绍了TensorFlow中的count_nonzero函数,用于计算输入张量中非零元素的数量,支持指定轴进行维度减少,并讨论了参数如axis、keep_dims和dtype的使用。通过实例展示了如何在不同情况下应用该函数。
摘要由CSDN通过智能技术生成

tf.count_nonzerocount_nonzero(

input_tensor,

axis=None,

keep_dims=False,

dtype=tf.int64,

name=None,

reduction_indices=None

)

在张量的维度上计算的非零元素的个数.

沿轴线给定的维度减少 input_tensor.除非 keep_dims 是 true,否则张量的秩将在轴的每个条目中减少1.如果 keep_dims 为 true,则减小的维度将保持长度为1.

如果轴没有条目,则会减少所有维度,并返回具有单个元素的张量.

注意,浮点与零的比较是通过精确的浮点相等性检查完成的.对于非零检查,小值不四舍五入为零.

例如:# 'x' is [[0, 1, 0]

# [1, 1, 0]]

tf.count_nonzero(x) ==> 3

tf.count_nonzero(x, 0) ==> [1, 2, 0]

tf.count_nonzero(x, 1) ==> [1, 2]

tf.count_nonzero(x, 1, keep_dims=True) ==> [[1], [2]]

tf.count_nonzero(x, [0, 1]) ==> 3

ARGS:input_tensor:要减少的张量.应该是数字类型,或 bool.

axis:要减少的维度.如果为 None(默认值),则减少所有维度.

keep_dims:如果为 true,则保留长度为1的缩小维度.

dtype:输出 dtype,默认为 tf.int64.

name:操作的名称(可选).

reduction_indices:轴的旧名称(不推荐).

返回:

减少的张量(非零值的数量).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值