注:本文只是对https://www.bilibili.com/video/av19141078/视频的个人笔记,侵权删
之前有看过几篇关于傅里叶变换和拉普拉斯变换的科普文。
是,这些文章讲了时域与频域的差别,讲了波叠加后的图像。
但看来看去,总觉得差了点什么,我拿出书本,看着那些公式,依旧不明白其意义,不明白为什么傅里叶变换偏偏就能把一个函数变成无数正弦波的叠加,为什么要有负无穷到正无穷的积分,为什么会有乘以一个e^-jwt?为什么会用冲激函数来表示傅里叶变换的结果?
于是我又打开的B站……
刷完视频,终于能够过自己那关了,虽然理解只是粗浅层面。
下面结合视频说说自己对傅里叶变换的理解:
首先需要知道傅里叶变换的结果,我们都知道傅里叶变换把任一的波形变成了无数正弦波的叠加,但这个说法依旧很抽象,我还是不知道他是怎么滤波的。但你看到下面这个声音波形,大概就能理解了:
在音频处理软件中,如果要进行消除噪声或是实现高通低通的效果,就是利用傅里叶变换将声音进行分析,从上图看到,啸叫声在高频的位置,于是我们就能够直接把这段高频噪声消除,改善音质!
知道了傅里叶变换的这个应用,我想我们可以尝试取理解它了。我们现在把上面的波形图缠绕在一个圆上,有什么用等会你就知道了
缠绕的频率会决定这个缠绕图像的样子
现在我们引入一个质心的概念,只记录x轴,然后就让绕在圆上 的图像随着频率的增加旋转起来吧,同时记录质心的位置
(图中的虚线是缠绕周期,比如2cycle/second,你就在原波形图每0.5秒划一条线,这样就代表两条线直接的图像绕这下方圆一圈)
发现没有,只有当缠绕频率等于原本波形的频率的时候,这个质心的横坐标才会明显向右移动!
现在你是不是决定这个特性是不是大加利用,就像用共振来检验物体的固有频率一样,我们也可以通过这个缠绕来求出原波形的频率,可以从sint+sin2t的图像中把sint和sin2t分别抓出来!是不是很神奇,是不是觉得稍微懂了点
(至于频率的0那点,其实只是代表波形的位置,我们只需要把整个波形向下移动,就可以消除0处那个尖峰)
好了,有了上面 的缠绕,你现在可以尝试理解真·傅里叶变换了,上面其实是一个近·傅里叶变换,毕竟我们总不可能老是把一个图形当成小仓鼠,在圈里绕来绕去吧,我们需要一个简洁的式子,来表示这个有点绕晕人的图形。
想到旋转,你能想到什么?
……
(给你点时间思考)
你知道吗,复数的本质就是旋转。
如果你想要一个一秒钟转一圈的圆,就可以用e2πit!但要一个任一频率转圈的圆呢?
那我们就可以用e2πfit,或者表示为ejwt。
是不是很眼熟!
好像差一个负号?
好,那就加上吧,e-jwt
(这是因为在傅里叶变换下默认是以顺时针旋转的,但复数的旋转矢量是逆时针。)
现在我们就可以把一个函数乘以一个e-jwt来得到一个缠绕图像啦,这和上面我们缠的图本质上一样
既然现在得到图了,我们就该想办法来求出这个图像的质心了,来把波形转换成频谱
质心的公式是什么,取很多个点,相加,然后求其平均
于是我们用积分表示
↓
好了,再看看书,书里的傅里叶正变换公式是什么
是不是只有右边的积分公式,而没有取平均
那这样的真·傅里叶变换求出来的是什么,想一下,如果我们取一段3秒的波形,那积分式就是质心的x轴坐标的三倍,取6秒波形,那积分式就是质心的x轴坐标的6倍……
于是我们如果取无穷长的波形呢,那傅里叶变换的模长是不是就变得无穷大了?
话说,为什么要取无穷大呢,可以这样理解:时间越长,这样缠绕的图像就越接近中心,也就是除了等于波形频率外的几点周围其他会接近于0,而等于波形频率那点会是一个明显的峰
!
现在你是不是已经大概理解了这个公式有多吓人,用复数的指数形式乘以一个函数f(t),意味着画一张缠绕版的图像,至于复函数的积分则是利用质心的思想
现在回想起来是不是觉得这些符号变得异常直观!
到最后,尝试解释一下为什么要引入一个单位冲激函数δ(t)
上面的分析我们已经知道了傅里叶变换公式的意义——它把一个无序的波形转化为频谱的,但是傅里叶变换的公式是对复函数进行积分欸,怎么算呀。
于是我们需要的是一个能简单显示频谱的工具,就像用音符来简单表示钢琴曲一样,而不是上来就把钢琴曲的声音波形图丢给你。
上面提到了,傅里叶变换的频谱中,除了等于波形频率外的几点周围其他会接近于0,而等于波形频率那点会是一个明显的峰,趋近于无穷大,现在回想单位冲激函数的定义,是不是就好像懂了?
其实我们就是把那一个个波峰用单位冲激函数进行表示
利用单位冲激函数的傅里叶变换只是1,得到其逆变换
于是就可以非常简洁的表示傅里叶变换把这些函数的傅里叶变换转化为单位冲激函数的左右移动和叠加!
好了,我该去刷题准备考试了,不搞这些旁门左道了