背景动机
AI,机器学习/深度学习技术(包括深层神经网络,DNN)在许多领域和应用中取得了很大的进展,包括医药、自动驾驶、社交媒体、金融工业等。在私有领域,人工智能的准确性和可用性方面的惊人增长具有显著意义。人工智能在气象学和海洋学领域也取得了显著的进展。然而,直到最近,在环境科学领域只有很少的AI应用开发工作。
令人鼓舞的是,AI在这些领域的应用在不断增加,而且取得了令人鼓舞的结果,其中包括预测技能。随着卫星数据的不断增加以及社会依赖的增加,将会持续改善预报准确率和精度。来自高分辨率卫星和传感器,一系列新传感器,以及物联网背景下新观测设备的数据不断增加。这些数据的增加将给这些数据的应用带来极大的挑战,AI已经成为潜在的解决技术。
主要内容
海洋环境视频和图像分析(VIAME)教程,一个自己动手的AI工具包
资源获取
第九期的视频资料获取,好奇心Log公众号后台回复NOAA9
python教程 | 最标准的地图调用方式(国家测绘局提供数据)
使用 xarray 合并 GRIB 2 要素场
python绘图 | IPCC-AR6最新气候分区掩膜示例
数据处理·机器学习·可视化
行业资讯·学习资料
长按关注不迷路