介绍
SQL 的神奇之处在于其易于学习,而它之所以如此容易学习的原因主要是代码语法非常直观。
但是,与SQL相比,Pandas 就不那么直观了,尤其是在我们先用的是SQL,再转向 Pandas 时,这种感觉尤为强烈。
那么,我们是不是应该思考在 SQL 中进行的数据操作,能不能在 Pandas 实现?
基于以上目标,本文可以作为一个在Pandas中编写SQL查询的指南。
目录
- 选择行
- 组合表格
- 筛选表
- 排序值
- 聚合函数
1. 选择行
- SELECT * FROM
如果要选择整个表,只需调用表的名称:
# SQLSELECT * FROM table_df# Pandastable_df
- SELECT a, b FROM
如果要从表中选择特定列,请在双括号中列出要的列:
# SQLSELECT column_a, column_b FROM table_df# Pandastable_df[['column_a', 'column_b']]
- SELECT DISTINCT
只需使用 .dropu duplicates()即可获得不同的值:
# SQLSELECT DISTINCT column_a FROM table_df# Pandastable_df['column_a'].drop_duplicates()
- SELECT a as b
如果要重命名列,请使用 .rename():
# SQLSELECT column_a as Apple, column_b as Banana FROM table_df# Pandastable_df[['column_a', 'column_b']].rename(columns={'column_a':'Apple', 'column_b':'Banana'})
- SELECT CASE WHEN
对于"SELECT CASE WHEN"的等效项,可以使用 np.select(), 其中首先指定每个选项的选择和值。
# SQLSELECT CASE WHEN column_a > 30 THEN "Large" WHEN column_a <= 30 THEN "Small" END AS SizeFROM table_df# Pandasconditions = [table_df['column_a']>30, table_df['column_b']<=30]choices = ['Large', 'Small']table_df['Size'] = np.select(conditions, choices)
2. 组合表格
- INNER/LEFT/RIGHT JOIN
只需使用 .merge()来连接表,就可以使用“how”参数指定它是 LEFT、RIGHT、 INNER 或者 OUTER联接。
# SQLSELECT * FROM table_1 t1 LEFT JOIN table_2 t1 on t1.lkey = t2.rkey # Pandastable_1.merge(table_2, left_on='lkey', right_on='rkey', how='left')
- UNION ALL
只需使用 pd.concat():
# SQLSELECT * FROM table_1UNION ALLSELECT * FROM table_2# Pandasfinal_table = pd.concat([table_1, table_2])
3. 筛选表
- SELECT WHERE
在筛选数据帧时,与在 SQL 中使用 WHERE 子句的方式相同时,只需在方括号中定义条件:
# SQLSELECT * FROM table_df WHERE column_a = 1# Pandastable_df[table_df['column_a'] == 1]
- SELECT column_a WHERE column_b
如果要从表中选择某个列并筛选其他列,请按照以下格式操作:
# SQLSELECT column_a FROM table_df WHERE column_b = 1# Pandastable_df[table_df['column_b']==1]['column_a']
- SELECT WHERE AND
如果要按多个条件进行筛选,只需将每个条件换在括号中,并使用"&"分隔每个条件。
# SQLSELECT * FROM table_df WHERE column_a = 1 AND column_b = 2# Pandastable_df[(table_df['column_a']==1) & (table_df['column_b']==2)]
- SELECT WHERE LIKE
SQL 中的 LIKE 等效项是 .str.contains()。如果要应用大小写不敏感,只需在参数中添加 case=False。
# SQLSELECT * FROM table_df WHERE column_a LIKE '%ball%'# Pandastable_df[table_df['column_a'].str.contains('ball')]
- SELECT WHERE column IN()
SQL 中 IN() 的等效项为 .isin()。
# SQLSELECT * FROM table_df WHERE column_a IN('Canada', 'USA')# Pandastable_df[table_df['column_a'].isin(['Canada', 'USA'])]
4.排序值
- ORDER BY one column
在SQL中,ORDER BY 的等同于 .sort_values()。使用 'ascending' 参数指定是按升序还是降序对值排序,默认值与 SQL 一样升序。
# SQLSELECT * FROM table_df ORDER BY column_a DESC# Pandastable_df.sort_values('column_a', ascending=False)
- ORDER BY multiple columns
如果要按多个列排序,可以列出括号中的列,并在括号中的 “ascending” 参数中指定排序方向。请确保遵循列出的列的相应顺序。
# SQLSELECT * FROM table_df ORDER BY column_a DESC, column_b ASC# Pandastable_df.sort_values(['column_a', 'column_b'], ascending=[False, True])
5.聚合函数
- COUNT DISTINCT
聚合函数有一个通用模式。
要复制 COUNT DISTINCT,只需使用 .groupby()和.nunique()。
# SQLSELECT column_a, COUNT DISTINCT(ID) FROM table_dfGROUP BY column_a# Pandastable_df.groupby('column_a')['ID'].nunique()
- SUM
# SQLSELECT column_a, SUM(revenue) FROM table_dfGROUP BY column_a # Pandastable_df.groupby(['column_a', 'revenue']).sum()
- AVG
# SQLSELECT column_a, AVG(revenue) FROM table_dfGROUP BY column_a# Pandastable_df.groupby('column_a')['revenue'].mean()
总结
Pandas无疑是一个强大的Python数据分析库,但是它也不是无所不能,对于某些操作并不具体和方便。
以上的操作可以帮助大家更好地在Pandas中实现一些SQL查询的实用操作,大家赶紧玩起来~
如果觉得文章有用,记得多多点赞分享哈~
也可以关注我们的公众号:为AI呐喊(weainahan)