99.1 金融难点通俗解释:阿尔法(α)和贝塔(β)系数

0. 承前

如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:
0. 金融资产组合模型进化全图鉴

1. 简述:阿尔法(α)和贝塔(β)系数

  • 阿尔法(α)系数:衡量的是投资组合或个股相对于市场的超额回报。它是投资者通过选股、市场时机选择或其他策略所获得的额外收益,不依赖于市场的整体表现。
  • 贝塔(β)系数:衡量的是投资组合或个股相对于整个市场的波动性。它告诉我们当市场上涨或下跌时,股票的价格预计会以多大的幅度变动。贝塔值为1表示股票的波动与市场一致;大于1表示波动更大,小于1则表示波动较小。

2. 比喻:阿尔法(α)和贝塔(β)系数

  • 阿尔法(α)系数 :类似于车辆的初始速度或基础速度。如果α为正,意味着这辆车从一开始就有额外的速度优势;如果α为负,则表示这辆车从一开始就处于劣势。
  • 贝塔(β)系数 : 类似于车辆的加速度或响应交通变化的能力。如果β为1,意味着这辆车的加速度与交通流一致;如果β大于1,表示这辆车加速更快,对交通变化的反应更为灵敏;如果β小于1,表示这辆车加速较慢,对交通变化的反应较为迟钝;如果β为0,表示这辆车完全独立于交通流,有自己的运动规律;如果β为负数,表示这辆车与交通流反向行驶。

3. 组合情况列举&比喻

Alpha (α) 范围Beta (β) 范围简述含义速度与加速度的比喻
α > 0β = 1投资表现优于市场平均水平,且波动性与市场一致。像一辆车以比平均更快的速度行驶,但加速度与交通流一致。
α < 0β = 1投资表现低于市场平均水平,且波动性与市场一致。像一辆车以比平均更慢的速度行驶,但加速度与交通流一致。
α = 0β = 1投资表现等于市场平均水平,且波动性与市场一致。就像车辆保持与交通流相同的速度和加速度,既不快也不慢。
α > 0β > 1投资不仅表现出色,而且波动性大于市场。像是一辆加速更快的跑车,虽然速度快但也更冒险。
α < 0β > 1尽管投资波动性大于市场,但表现仍然低于市场水平。像是一辆重载卡车,尽管加速更快但速度却比其他车辆慢。
α > 00 < β < 1投资表现优于市场,但波动性小于市场。像是一辆稳定的小型电动车,速度适中且加速度平缓,但超过了普通车辆。
α < 00 < β < 1投资波动性小于市场,但表现仍然低于市场水平。像是一辆缓慢行驶的老式汽车,加速度小且速度慢,没能跟上交通流。
α > 0β = 0投资完全不受市场影响,并产生了正的超额回报。像是一架无人机,独立于地面交通,自由飞行并达到目的地。
α < 0β = 0投资完全不受市场影响,但产生了负的超额回报。像是一架失控的无人机,独立于地面交通,但未能到达预期位置。
α > 0β < 0投资与市场反向变动,当市场下跌时可以获得正回报。像是一辆逆向行驶的赛车,在大多数车辆减速时反而加速前进。
α < 0β < 0投资与市场反向变动,但在市场下跌时仍然产生负回报。像是一辆逆向行驶的故障车,即使其他车辆减速,它也继续减速或停止。

4. 实现代码:

import pandas as pd
import statsmodels.api as sm

def calculate_alpha_beta(market_returns, stock_returns):
    """
    通过线性回归计算给定股票相对于市场的阿尔法系数和贝塔系数。
    
    参数:
        market_returns (pd.Series or list): 大盘(市场)的收益率序列
        stock_returns (pd.Series or list): 股票的收益率序列
    
    返回:
        tuple: (alpha, beta) 其中 alpha 是阿尔法系数,beta 是贝塔系数
    """
    # 确保输入是 pandas Series
    if not isinstance(market_returns, pd.Series):
        market_returns = pd.Series(market_returns)
    if not isinstance(stock_returns, pd.Series):
        stock_returns = pd.Series(stock_returns)
    
    # 添加常数项以包含截距(阿尔法)
    X = sm.add_constant(market_returns)
    
    # 创建并拟合 OLS 回归模型
    model = sm.OLS(stock_returns, X).fit()
    
    # 获取回归结果中的参数
    alpha = model.params[0]  # 截距,即阿尔法
    beta = model.params[1]   # 斜率,即贝塔
    
    return alpha, beta
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI量金术师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值