目录
0. 前言
0.1 专栏主旨
本专栏【金融资产组合模型进化论】以马科维茨资产组合模型为起点,带领读者一步步感受、体验金融资产组合模型的优化、进化的演变,目标是能让所有读者都能看明白的金融资产组合模型理论+因子理论+时序模型+创新AI,使读者对金融资产有一个框架的、高纬度的认识。
0.2 本文主旨
本文为记录专栏中全部文章的汇总,让读者全面地了解、观察其进化路线。并可以快速导航找到自己想要的模型。
1. 资产组合模型合集
通过资产组合模型,获取指定日期的投资组合。
- 揭秘原始马科维茨资产组合模型(理论+Python实战)
- 马科维茨资产组合模型+CAMP优化方案(理论+Python实战)
- 马科维茨资产组合模型+Fama-French三因子优化方案(理论+Python实战)
- 马科维茨资产组合模型+Fama-French五因子优化方案(理论+Python实战)
- 马科维茨资产组合模型+政策意图AI金融智能体(Qwen-Max)增强方案(理论+Python实战)
- 马科维茨资产组合模型+政策意图AI金融智能体(DeepSeek-V3)增强方案(理论+Python实战)
- 马科维茨资产组合模型+金融研报AI长文本智能体(Qwen-Long)增强方案(理论+Python实战)
- 以下为预告项目:
- 引入高阶矩
- 动态风险预算
- MPT+机器学习
- MPT+LSTM
- MPT+Transformer
2. 资产组合模型量化回测合集
对以上资产组合进行量化回测。
- 对马科维茨资产组合模型实现Backtrader量化回测(理论+Python实战)
- 对MPT+CAMP优化方案实现Backtrader量化回测(理论+Python实战)
- 对MPT+Fama-French三因子优化方案实现Backtrader量化回测(理论+Python实战)
- 对MPT+Fama-French五因子优化方案实现Backtrader量化回测(理论+Python实战)
3. 金融难点通俗解释合集
对本专栏内出现的金融名词,尝试使用贴近生活的描述方式,使零基础的朋友都能够明白晦涩难懂的金融量化知识。
- 阿尔法(α)和贝塔(β)系数
- 协方差矩阵
- 市净率(PB)
- 市盈率(PE)
- 市销率(PS)
- 股息率(DV)
- 市净率(PB)VS市盈率(PE)VS市销率(PS)VS股息率(DV)
- 净资产收益率(ROE)
- 总资产收益率(ROA)
- 投资资本回报率(ROIC)
- 净资产收益率(ROE)VS投资资本回报率(ROIC)VS总资产收益率(ROA)
- 毛利率
- 营业利润率
- 净利率
- 毛利率vs营业利润率vs净利率
- 营业总收入
- 归母净利润
- 扣非净利润
- 营业总收入vs归母净利润vs扣非净利润
- 中药配方比喻马科维茨资产组合模型(MPT)
- 学生成绩比喻资产资本定价模型(CAPM)
- 学生成绩比喻FAMA-FRENCH五因子模型(FF5)
- 小卖部经营比喻PPI(生产者物价指数)vsCPI(消费者物价指数)
- MLF(中期借贷便利)vs LPR(贷款市场报价利率)
4. AI量化开发合集
在AI量化项目中,对模块进行开发过程记录。
5. AI量化面试合集
- 解释夏普比率(Sharpe Ratio)的计算方法及其在投资组合管理中的应用,并说明其局限性
- 在构建多因子选股模型时,如何有效处理因子之间的共线性问题?
- 解释配对交易(Pairs Trading)的原理,并说明如何选择配对股票以及设计交易信号
- 如何设计一个基于强化学习的交易系统?
- 在使用LSTM预测股票价格时,如何有效处理金融时间序列的非平稳性?
- 如何评估AI量化模型的过拟合风险?
- 如何利用新闻文本数据构建交易信号?
- 如何使用自监督学习方法从原始市场数据中挖掘新的alpha因子?
- 如何设计一个自适应的TWAP算法,使其能够根据实时市场情况动态调整执行策略?
- AI大模型中的MOE架构主要类型,和DeepSeek使用了哪一种类型?
- 量化金融中什么是最大似然估计?
- 量化金融中什么是蒙特卡罗模拟?
- 支持向量机(SVM)如何处理高维和复杂数据集?
- 模型蒸馏(Model Distillation)和模型微调(Fine-tuning)的异同点
- PPO与GPPO策略优化算法的异同点
- 监督学习技术在量化金融中的应用方案
- 凯利准则的核心思想是什么?如何用它来确定最佳资本配置比例?
6. AI量化Paper精读合集
经典AI量化论文。