mf模型 svd++_推荐系统算法(MF、FM、CF、SVD、LFM、SVD++、TItemCF、timeSVD++、模型融合)...

为什么需要矩阵分解?(matrix factorization model)

协同过滤可以解决我们关注的很多问题,但是仍然有一些问题存在,比如:

物品之间存在相关性,信息量并不随着向量维度增加而线性增加

矩阵元素稀疏,计算结果不稳定,增减一个向量维度,导致近邻结果差异很大的情况存在

上述两个问题,在矩阵分解中可以得到解决。原始的矩阵分解只适用于评分预测问题,这里所讨论的也只是针对于评分预测问题。常用的分解算法有SVD和SVD++。

矩阵分解(MF)

目前推荐系统中用的最多的就是矩阵分解方法,在Netflix Prize推荐系统大赛中取得突出效果。以用户-项目评分矩阵为例,矩阵分解就是预测出评分矩阵中的缺失值,然后根据预测值以某种方式向用户推荐。常见的矩阵分解方法有

基本矩阵分解(basic MF)

正则化矩阵分解(Regularized MF)

基于概率的矩阵分解(PMF)

非负矩阵(Non-negative MF

正交非负矩阵(Orthogonal non-negative MF)

pca 与 svd的关系: pca是一种手段,svd是pca求解的方法,svd处理非方阵,当然我们可以通过特征值分解来做pca

简单来说,就是把原来的大矩阵,近似分解成两个小矩阵的乘积,在实际推荐计算时不再使用大矩阵,而是使用分解得到的两个小矩阵。

具体来说,假设用户物品评分矩阵为 R,形状为 mxn,即 m 个用户, n 个物品。我们选择一个很小的数 k,k 比 m 和 n

都小很多,然后通过算法生成两个矩阵 P 和 Q,这两个矩阵的要求如下:P 的形状是 mxk,Q 的形状是 nxk, P 和 Q

的转置相乘结果为 R。也就是说分解得到的矩阵P和Q可以还原成原始的矩阵R。

用公式来描述就是:

eb707000082f982eae6ded70a055c38d.png

其中 R 表示真实的用户评分矩阵,一般有很多缺失值(缺失值表示用户没有对该物品评分),带尖帽的 R 表示使用分解矩阵预测的用户评分矩阵,它补全了所有的缺失值。

另一个角度

矩阵分解就是把用户和物品都映射到一个 k 维空间中(这里映射后的结果用户用矩阵P表示,物品用矩阵Q表示),这个 k 维空间不是我们直接看得到的,也不一定具有非常好的可解释性,每一个维度也没有名字,所以常常叫做隐因子。用户向量代表了用户的兴趣,物品向量代表了物品的特点,且每一个维度相互对应,两个向量的内积表示用户对该物品的喜好程度。

因子分解机算法Factorization Machines(FM)

请查看我的另一篇博客

协同过滤算法collaborative filtering(CF)

请查看我的另一篇博客

1.传统的SVD分解

对于如何补全一个矩阵,历史上有过很多的研究。一个空的矩阵有很多种补全方法,而我们要找的是一种对矩阵扰动最小的补全方法。那么什么才算是对矩阵扰动最小呢?一般认为,如果补全后矩阵的特征值和补全之前矩阵的特征值相差不大,就算是扰动比较小。所以,最早的矩阵分解模型就是从数学上的SVD(奇异值分解)开始的。给定m个用户和n个物品,和用户对物品

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值