python矩阵乘法分治_矩阵乘法的分治算法实现思路

转载自这里,稍有改动。与原书中的伪代码思路是相同的。

// C++

#include

#include

template

struct Matrix {

Matrix(size_t r, size_t c) {

Data.resize(c, std::vector(r, 0));

}

void SetSubMatrix(const int r, const int c, const int rn, const int cn,

const Matrix& A, const Matrix& B) {

for (int cl = c; cl < cn; ++cl)

for (int rl = r; rl < rn; ++rl)

Data[cl][rl] = A.Data[cl - c][rl - r] + B.Data[cl - c][rl - r];

}

static Matrix SquareMultiplyRecursive(Matrix& A, Matrix& B,

int ar, int ac, int br, int bc, int n) {

Matrix C(n, n);

if (n == 1) {

C.Data[0][0] = A.Data[ac][ar] * B.Data[bc][br];

} else {

C.SetSubMatrix(0, 0, n / 2, n / 2,

SquareMultiplyRecursive(A, B, ar, ac, br, bc, n / 2),

SquareMultiplyRecursive(A, B, ar, ac + (n / 2), br + (n / 2), bc, n / 2));

C.SetSubMatrix(0, n / 2, n / 2, n,

SquareMultiplyRecursive(A, B, ar, ac, br, bc + (n / 2), n / 2),

SquareMultiplyRecursive(A, B, ar, ac + (n / 2), br + (n / 2), bc + (n / 2), n / 2));

C.SetSubMatrix(n / 2, 0, n, n / 2,

SquareMultiplyRecursive(A, B, ar + (n / 2), ac, br, bc, n / 2),

SquareMultiplyRecursive(A, B, ar + (n / 2), ac + (n / 2), br + (n / 2), bc, n / 2));

C.SetSubMatrix(n / 2, n / 2, n, n,

SquareMultiplyRecursive(A, B, ar + (n / 2), ac, br, bc + (n / 2), n / 2),

SquareMultiplyRecursive(A, B, ar + (n / 2), ac + (n / 2), br + (n / 2), bc + (n / 2), n / 2));

}

return C;

}

void Print() {

for (size_t c = 0; c < Data.size(); ++c) {

for (size_t r = 0; r < Data[0].size(); ++r)

std::cout << Data[c][r] << " ";

std::cout << "\n";

}

std::cout << "\n";

}

std::vector<:vector> > Data;

};

int main() {

Matrix A(2, 2);

Matrix B(2, 2);

A.Data[0][0] = 2; A.Data[0][1] = 1;

A.Data[1][0] = 1; A.Data[1][1] = 2;

B.Data[0][0] = 2; B.Data[0][1] = 1;

B.Data[1][0] = 1; B.Data[1][1] = 2;

A.Print();

B.Print();

Matrix C(Matrix::SquareMultiplyRecursive(A, B, 0, 0, 0, 0, 2));

C.Print();

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值