实数系的基本定理_实数集完备性基本定理证明整理(1)

e5a037e655df8f9c7e952fc64730173c.png

啊啊啊又拖了好久~

不过接下来会1~2天就更新一篇的!因为在下打算整理下实数集完备性的几个基本定理的互相证明,但写在一篇里篇幅会有点长,所以分几次写。

至于为什么复习到了实数完备性......

其实是之前数列太难的部分先跳过了,打算每天分担一点,不要挤在一段时间,不然对于任何一个正数

,总能发现我的效率在其之下。

好了好了,接下来进入正题。

先列一下实数完备性的六个基本定理:

1.确界原理

2.单调有界定理

3.区间套定理

4.有限覆盖定理

5.聚点定理&凝聚定理

6.柯西收敛准则

显然地,这章我们需要掌握六个定理互推,因此有

个证明,在此不会一一列举,因为其中有很多思路非常类似的。

本篇先整理由区间套定理证明其余五个定理。

区间套:若闭区间列

具有如下性质:

(i)

;

(ii)

,

则称

闭区间套,或简称 区间套.

区间套定理:

是一个区间套,则在实数系中存在唯一的点
,使得
.

例1:区间套定理证明确界原理.

证明:不妨设集合

有上界
,并在
中取一点
.

,
, 总有
,因此
为上确界.

,构造闭区间
.

由于有公共元素

.

等分为两个子区间,即
,
.

,则令
,
,即

反之,则令

.

同样地,再将

等分为两个子区间,按此方法得到
.

显然地,

上界并且
,

对于

,

.

因此

为区间套.

故存在唯一的实数

,满足
,则
.

,有
,则
,
,这与
为上界矛盾,

上界.

又因

,则
,
,当
时,有
,

为上确界.

证毕.

上述的证明运用到了二分法构造区间套,类似地可以用二分法证明出单调有界定理聚点定理&凝聚定理有限覆盖定理(反证)

对于证明Cauchy收敛准则,也能运用二分法,但与上述构造较为不同。

例2:区间套定理证明Cauchy收敛准则.

证明:

必要性:

收敛于
,则
,
,当
时,成立
.

因此当

时,有
.

为基本数列(Cauchy数列).

充分性:

为基本数列,对
,
,当
时,
.

,有
,

令闭区间

.

同样地,对

,
,
,

得到

.

如此可以得到区间套

满足

,且
.

故存在唯一的实数

,有
.

,由夹逼定理,
.

证毕.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值