实数完备性|确界存在定理证明Cauchy收敛准则

2. 确界原理 → \to Cauchy收敛准则
证:
必要性:略(利用三角不等式易证,可参考陈纪修老师教材p65)
充分性:构造数集 E = { c ∣ ( − ∞ , c ] ∩ { x n } E=\{c|(-\infty,c]\cap \{x_n\} E={c(,c]{xn}是空集或有限点集 } \} },由Cauchy准则的充分条件,易知 { x n } \{x_n\} {xn}有界, { x n } \{x_n\} {xn}的下界必属于 E E E { x n } \{x_n\} {xn}的上界必是 E E E的上界,故 E E E是非空有上界数集。根据确界存在定理知 E E E存在上确界,设 ξ = s u p   E \xi=sup\ E ξ=sup E,对 ∀ ε > 0 , U ( ξ , ε ) \forall \varepsilon>0,U(\xi,\varepsilon) ε>0,U(ξ,ε)内必定含有 { x n } \{x_n\} {xn}的无穷多个点(否则, ( − ∞ , ξ + ε ] (-\infty,\xi+\varepsilon] (,ξ+ε]只包含S的有限个点,从而 ξ + ε ∈ E \xi+\varepsilon\in E ξ+εE,矛盾)。
x n k ∈ ( ξ − ε , ξ + ε ) , k = 1 , 2 , ⋯   ; n 1 < n 2 < ⋯   ; x_{n_k}\in(\xi-\varepsilon,\xi+\varepsilon),k=1,2,\cdots;n_1<n_2<\cdots; xnk(ξε,ξ+ε),k=1,2,;n1<n2<;
N 1 = m a x { N , n 1 } N_1=max\{N,n_1\} N1=max{N,n1},当 n > N 1 n>N_1 n>N1时, ∃ n k > N 1 \exist n_k>N_1 nk>N1使得 ∣ x n − ξ ∣ ≤ ∣ x n − x n k ∣ + ∣ x n k − ξ ∣ < 2 ε |x_n-\xi|\leq|x_n-x_{n_k}|+|x_{n_k}-\xi|<2\varepsilon xnξxnxnk+xnkξ<2ε于是 lim ⁡ n → ∞ x n = ξ \lim\limits_{n\to \infty}x_n=\xi nlimxn=ξ,即证。

定义&定理

  定义1 确界:非空有界数集S的最小(大)上(下)界。
E E E的上确界 β = s u p   E \beta=sup\ E β=sup E,则有如下性质:
1. ∀ x ∈ E , x ≤ β \forall x\in E,x\leq \beta xE,xβ
2. ∀ ε > 0 , ∃ x ∈ E , 使 x > β − ε \forall \varepsilon>0,\exists x\in E,使x>\beta-\varepsilon ε>0,xE,使x>βε

定理1 确界原理:非空有上(下)界数集,必有上(下)确界。
注:确界存在定理在 R R R上才成立。

定理2 单调有界原理:单调有界数列必有极限。
注:单调增加有上界或单调减少有下界必有极限。

定理3 Cauchy收敛准则:数列 { x n } \{x_n\} {xn}收敛    ⟺    ∀ ε > 0 , ∃ N > 0 , ∀ n , m > N 时 , 有 : ∣ x n − x m ∣ < ε \iff\forall\varepsilon>0,\exists N>0,\forall n,m>N时,有:|x_n-x_m|<\varepsilon ε>0,N>0,n,m>N:xnxm<ε

  定义4 设S为实轴上的点集, ξ \xi ξ为定点(可以属于S也可以不属于S)。若 ξ \xi ξ的任意邻域上都含有S中无穷多个点,则称 ξ \xi ξ为S的一个聚点
  定义4‘  对于点集S,若点 ξ \xi ξ的任意 ε \varepsilon ε邻域上都含有S中异于 ξ \xi ξ的点,即 U o ( ξ ; ε ) ∩ S ≠ ∅ U^o(\xi;\varepsilon)\cap S\neq\varnothing Uo(ξ;ε)S=,则称 ξ \xi ξ为S的一个聚点
  定义4‘’ 若存在各项互异的收敛数列 { x n } \{x_n\} {xn} ⊂ S \subset S S,则其极限 lim ⁡ n → ∞ x n = ξ \lim\limits_{n \to \infty}x_n=\xi nlimxn=ξ称为S的一个聚点
  PS:以上3个聚点的等价定义可相互转换,证明可参考华东师范大学数学分析上册p167.

定理4 Weierstrass聚点定理:实轴上任何有界无穷点集S,至少有一个聚点。
定理4‘ Bolzano致密性定理:有界无穷数列必有收敛子列。
注:显然,致密性定理是聚点定理的特殊情形。

  定义5 如果一列闭区间 { [ a n , b n ] } \{[a_n,b_n]\} {[an,bn]}满足条件:
1. [ a n + 1 , b n + 1 ] ⊂ [ a n , b n ] , n = 1 , 2 , ⋯   ; [a_{n+1},b_{n+1}]\subset [a_n,b_n],n=1,2,\cdots; [an+1,bn+1][an,bn],n=1,2,;
2. lim ⁡ n → ∞ ( a n − b n ) = 0 , \lim\limits_{n\to \infty}(a_n-b_n)=0, nlim(anbn)=0,
则称这一列闭区间为一个闭区间套。

定理5 区间套定理:若 { [ a n , b n ] } \{[a_n,b_n]\} {[an,bn]}是一个闭区间套,则存在唯一的 ξ ∈ R \xi \in R ξR,使得 a n ≤ ξ ≤ b n ( ∀ n ∈ N ) a_n \leq \xi \leq b_n(\forall n\in N) anξbn(nN)

注:若将定理条件中的闭区间套改为开区间套,则数列 { a n } , { b n } \{a_n\},\{b_n\} {an},{bn}依然收敛于同一极限 ξ \xi ξ,但 ξ \xi ξ可能不属于任何一个开区间 [ a n , b n ] [a_n,b_n] [an,bn].

  定义6 设 S S S为数轴上的点集, H H H为开区间的集合(即 H H H的每一个元素都是形如 ( α , β ) (\alpha,\beta) (α,β)的开区间)。若 S S S中任何一点都在 H H H中至少一个开区间内,则称 H H H S S S的一个开覆盖,或称 H H H覆盖 S S S。若 H H H中开区间的个数是有限(无限)的,则称 H H H S S S的一个有限开覆盖(无限开覆盖)。

定理6 Heine-Borel有限覆盖定理:设H为闭区间 [ a , b ] [a,b] [a,b]的一个开覆盖,则H中存在有限个开区间来覆盖 [ a , b ] [a,b] [a,b]

本系列不断更新中。。。。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值