确界原理证明实数完备性定理

本文通过确界原理证明了实数完备性的几个基本定理,包括单调有界定理、区间套定理、有限覆盖定理、聚点定理以及Cauchy收敛准则,展示了确界原理在实数理论中的核心作用。
摘要由CSDN通过智能技术生成

确界原理证明其他实数完备性基本定理

确界原理:非空有界上(下)数集,必有上(下)确界

1.确界原理证明单调有界定理

单调有界定理:任何单调有界数列必有极限

证:不妨设 { a n } \{ an \} { an}为有上界递增数列.

确界原理,数列 { a n } \{ an \} { an}有上确界, 记 a = sup ⁡ { a n } a=\sup \left\{a_{\mathrm{n}}\right\} a=sup{ an} .

下面证明 a a a 就是 { a n } \{ an \} { an}的极限.

事实上, 任给 ε > 0 \varepsilon>0 ε>0, 按上确界的定义, 存在数列 { a n } \{ an \} { an}中某一项 a N a_N aN , 使得

a − ε < a N a -\varepsilon< a_N aε<aN

又由 { a n } \{ an \} { an}递增性, 当 n ⩾ N n \geqslant {N} nN

a − ε < a N ⩽ a n a-\varepsilon< a_{N} \leqslant a_{\mathrm{n}} aε<aNan

另一方面,由于 a a a { a n } \{ an \} { an}的一个上界, 故对一切 a n a_n an 都有

a n ⩽ a < a + ε a_{n} \leqslant a< a+\varepsilon ana<a+ε

所以当 n ⩾ N \mathrm{n} \geqslant \mathrm{N} nN 时有

a − ε < a n < a + ε a-\varepsilon< a_{n}< a+\varepsilon aε<an<a+ε

这就证得 lim ⁡ n → ∞ a n = a \lim _{n \rightarrow \infty} a_{n}=a limnan=a .

同理可证有下界的递减数列必有极限,且其极限即为它的下确界.

2.确界原理证明区间套定理

区间套定理

{ [ a n , b n ] } n = 1 ∞ \{[a_{n}, b_{n}]\}_{n=1}^{\infty} { [an,bn]}n=1 是一个闭区间套,即满足:

1 ) ∀ n , [ a n + 1 , b n + 1 ] ⊂ [ a n , b n ] 1) \forall n, \left[a_{n +1}, b_{n +1}\right] \subset\left[a_{n}, b_{n}\right] 1)n,[an+1,bn+1][an,bn]

2 ) lim ⁡ n → ∞ ( b n − a n ) = 0 2) \lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0 2)limn(bnan)=0

存在唯一的实数 ξ \xi ξ,使得 ξ ∈ [ a n , b n ] \xi\in [a_{n}, b_{n}] ξ[a

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值