斐波那契数列是数学里面一个蛮经典的数列,它的构造方式比较简单,但实际上高等数学里面好几个数学思想都会跟斐波那契数列有一定的联系。
斐波那契数列也叫做“兔子数列”或者“Fibonacci soup”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 3,n ∈ N*)。
根据斐波那契数列这样一个递归的思想,在江湖中有这样一个名词,叫“斐波那契汤”(Fibonacci soup)。就是说把昨天晚上的汤和前天晚上的汤混合在一起,就得到了一个今天的一个汤。比如说,你前天晚上喝了一个番茄汤,剩下一部分没有喝完,昨天晚上做了一个鸡蛋汤,也剩下一部分没有喝完,那当你把这两种汤混合在一起,那你今天晚上就有一个新的汤,叫做“番茄鸡蛋汤”。这个番茄鸡蛋汤就可以看成一个昨天晚上和前天晚上的汤混合在一起的一个组成,叫做斐波那契汤。
关于斐波那契数列,第一个比较重要的是他的通项公式。这个通项公式放在高等数学里面,通常是让人们去学习数学归纳法的。
这里面有一个有趣的事情是,用无理数来表示有理数。
具体如何证明这个通项公式,可以看看这个视频,直接从4分30秒开始看。
https://www.bilibili.com/video/BV1Ve411x7yZ/www.bilibili.com通过构建等比数列的方法得到这个斐波那契数列的通项公式,这个想法在我们求行列式的时候会经常用到。(视频里面有讲)