时间序列分析相关概念
时间序列分析法是统计学科的一个重要分支,它是通过序列数据(或称为随机数据序列)来揭示系统动态结构发展演变规律的一种统计方法,即通过利用随机过程理论和数理统计学相结合的方法,来达到研究随机数据序列所服从的统计分布规律的目的,进而用于解决实际问题(如经济、农业、信号处理等领域)。时间序列分析方法的基本原理是根据系统监测到的某段时期内的有序序列数据(或称为监测到的历史数据),建立能够准确地反应时间序列中所包含的系统演变规律的数学模型,来评价事物的现状和估计事物的未来变化。
1 时间序列分析相关概念
1.1 时间序列
根据时间序列定义能够挖掘出时间序列具有以下特点:
(1)序列中的数据点位置很大程度上由时间先后顺序决定,但不完全依赖时间变化来得到。
(2)由于时序中不同时刻点的取值具有一定的随机性,因此不可能完全准确的通过历史观测值预测。
(3)相距间隔较近的不同时刻的时序数值具有很强的关联性,正是这种相关性能够准确的反应系统演变规律。
(4)时序数值在随时间变化过程中,往往表现出某种周期性或者趋势性的变化特征。
在桥梁健康监测系统中,各种传感器采集到的是一组带有噪声的多维动态数据,将有噪多维动态数据简化成多个一维数据,并从中得到反映桥梁健康状况的结果,即如何将一维数据进行数据分析和处理,进而实现从全局把握桥梁健康安全状况。因此,对桥梁监测到的时序数据进行时序分析,以获取桥梁结构安全评价指标是极其具有现实研究意义的。
图 2-1 给出了从数据挖掘的过程来认知时间序列分析。

时间序列分析是统计学的重要分支,用于研究随机数据序列的规律。它涉及时间序列的定义、特点,包括数据点与时间的关系、随机性、相关性和周期性。在桥梁健康监测等领域,通过对时序数据的分析,可以评估现状并预测未来变化。关键步骤包括检查序列的平稳性、纯随机性和正态性,以便选择合适的分析方法。
最低0.47元/天 解锁文章
1898

被折叠的 条评论
为什么被折叠?



