埋地电缆线路具有占地面积少,故障率低的优点,但大多数城市的电缆线埋于地下,发生故障时能够接收到的反信号较弱,而且当故障定位不精确,故障持续时间过长,将会对电缆寿命造成很大影响。常用的电缆故障测距方法可分3大类:分布式阻抗法、雷达法和外加信号法[1],其中阻抗法出现的较早,该方法的优点是原理简单明了,且测量数据精确缺点也很突出,就是测量数据的后期处理相当繁琐,且分析的最终结果还需要了解被测电缆的金属材料和该城市埋地电缆的铺设路径。而另外一种外加信号法在不能大致确定故障范围的时候,是不易使用的。行波测距中,对反射脉冲信号的起始点的判断是电缆测距的核心。系统的器件性能则决定了行波法测量数据的精准及响应速度[2-3]。与传统的检测仪多使用单片机相比较,FPGA的运行速度要高的多,对于检测的精确度和减小盲区都有大的改善。李博通提出一种基于故障区域识别的超高压混联线路故障测距算法,提出了以架空线电缆连接点为参考的故障区域识别方法,并推导出不同区段故障点定位函数,最后通过搜索或计算的方法得到精确的故障点位置。刘健等提出一种含分布式电源配电网的故障定位算法,根据故障电流信息的改进故障定位策略,依靠传统的故障定位规则进行故障定位,解决含分布式电源架空配电网故障定位难题。Chun等提出的一种自适应RLS滤波的电缆故障定位算法,该算法一种基于自适应递归最小二乘滤波的方法和归一化互相关的方法来减少定位盲点,可以在高空间分辨率的电缆进行估计故障定位。Christian等提出一种基于双端故障参数测距方法的电缆故障定位算法,由于电缆和电缆系统参数会影响第一个故障波的特性,基于该原理所采取的定位算法通过提取故障波的信号参数来提高故障定位的精确度。1基于混合普罗尼分析的信号分解在对电缆反馈的故障波输入进隔离电路前,采用基于混合普罗尼分析的信号分解方法对故障信号进行分解,从而提取能够判断故障信号的特征参数。普罗尼分析(pronyanalysis,PA)是用于提取振幅,相位角,阻尼因子和信号分量的频率的方法,在PA的方法里,当故障线路反馈的信号x(n)输入,一个指数分量的线性组合如下面的等式所示:x^(n)=Mi=1SmZmp(1)其中M是该命令或信号分量的数量;n为信号采样的数目;Sm和Zm的参数定义如下:Sm=Vmeim(2)Zm=e(gm+j2ifm)t(3)其中Vm、Sm、gm和fm和分别表示振幅,相位角,阻尼因子和所估计信号x^(n)的第m指数成分的频率。对于每个指数分量的这4个参数能够利用采样间隔t通过数据顺序的状态空间生成。当试图提取故障产生的瞬态信号的成分,PA方法需要解决两个主要问题,第一个是信号分量的数目应预先确定,但在故障信号的情况下要进行确定是比较困难的。第二个是结果的准确性强烈依赖于噪声,因此对于有太多小的高频分量的信号,结果可能伴随有相当大的误差。为了克服这两个问题,使用奇异值分解(singularvaluedecomposition,SVD)改进PA方法,改进的算法描述如下:(1)考虑阶数M作为信号样本N数量的三分之一;(2)使用样本G函数形成矩阵H:G(i,j)=N-1n=Mx(n-j)x*(n-i)(4)H=G(1,0)G(1,1)…G(1,M)G(2,0)G(2,1)…G(2,M)G(M,0)G(M,1)…G(M,M)(5)(3)应用SVD的矩阵H:H=KEWU(6)其中K和E是分别被称为矩阵H的左奇异矩阵和右奇异矩阵。是一个对角矩阵并且它的对角线是矩阵H的奇异值,且12…1M0。()U表示矩阵的共轭转置。确定有效的M,需要注意的是,M是最小整数,
普罗尼算法matlab,基于混合普罗尼分析的电缆故障测距系统设计
最新推荐文章于 2021-11-02 10:08:50 发布