模为2的逆元是什么_逆元

什么是逆元

来自一个大佬的解释,反正我是看懂了。。

乘法逆元:

模p意义下,一个数a如果有逆元x,那么除以a相当于乘以x。

在模n的意义下,a存在逆元的充要条件是**n不等于1,且(a,n)互质。

怎样求逆元?

费马小定理(有限制)

=》p为素数时,a关于mod p的逆元为a^(p-2)mod p。用快速幂模。

扩展欧几里得算法(普遍适用)

一篇解释了推导过程的博客

给定模数n,求a的逆元

即ax=1(mod n)

=》ax-ny=1

所以可用扩展欧几里得, ax+by=gcd(a,b)求逆元,即求x的值。

注意:

存在逆元的判断条件是

a,m互质。

if(gcd(a,m) != 1) //a,m不互质,则不存在逆元

cout << "Not Exist" << endl;

else

{

ext_gcd(a, m, x, y);

LL ans = (x<=0) ? (x%m+m) : x; //有可能x是负数,x要先取模再加

cout << ans << endl;

题意:给出n(n=A%9973),求(A/B)%9973。(我们给定的A必能被B整除,且gcd(B,9973) = 1)。

思路:

用乘法逆元的定义:模p意义下,一个数a如果有逆元x,那么除以a相当于乘以x。即变成(A/inv(B))%9973,即(A%9973/inv(B)%9973)%9973。

所以这道题就是求inv(B),求B的逆元。

上代码,两种方法都有了

#include

#include

#define N 9973

using namespace std;

typedef long long LL;

LL power(LL a, int b, int p) //要用long long啊啊

{///快速幂模,p为素数时,a关于mod p的逆元为a^(p-2)mod p

LL ans = 1; //要用long long啊啊

while(b > 0)

{

if(b&1) //a是奇数

ans = ans*a%p;

b >>= 1;

a = a*a%p;

}

return ans%p;

}

LL ext_gcd(int a, int b, int &x, int &y)

{///扩展欧几里得求逆元,普遍的求法

if(b == 0)

{

x = 1;

y = 0;

return a;

}

int r = ext_gcd(b, a%b, x, y);

int temp = x; //扩展欧几里得的推导

x = y;

y = temp - a/b*y;

return r;

}

int main()

{

int t,x,y;

int n, b;

while(cin >> t)

{

while(t--) //注意看题!别总犯低级错误!

{

scanf("%d%d", &n, &b);

//cout << (n%N*power(b, N-2, N))%N << endl;

ext_gcd(b, N, x, y); //N不用加负号

if(x < 0) x += N; //要加模的数n,防止是负数

cout << (n%N*x%N)%N << endl;

}

}

return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值