什么是NumPy?
NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
NumPy 的前身 Numeric 最早是由 Jim Hugunin 与其它协作者共同开发,2005 年,Travis Oliphant 在 Numeric 中结合了另一个同性质的程序库 Numarray 的特色,并加入了其它扩展而开发了 NumPy。NumPy 为开放源代码并且由许多协作者共同维护开发。
NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:
一个强大的N维数组对象 ndarray广播功能函数整合 C/C++/Fortran 代码的工具线性代数、傅里叶变换、随机数生成等功能特征值和特征向量的定义
设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。
特征值 是方程式Ax=ax的标量解(scalar solutions),其中A是一个二维矩阵,而x是一维向量。 特征向量 实际上就是表示特征值的向量。
提示:
特征值和特征向量都是基本的数学概念,并且常用于一些重要的算法中,如 主成分分析(PCA) 算法。PCA可以极大地简化大规模数据集的分析过程。
用NumPy进行计算
计算特征值时,可以求助于numpy.linalg程序包提供的eigvals()子例程。函数eig()的返回值是一个元组,其元素为特征值和特征向量。
可以用子程序包numpy.linalg的eigvals()和eig()函数来获得矩阵的特征值和特征向量,并通过dot()函数(详见本书对应的eigenvalues.py文件)来验算结果。
import numpy as npA = np.mat("3 -2;1 0")print "A\n", Aprint "Eigenvalues", np.linalg.eigvals(A)eigenvalues, eigenvectors = np.linalg.eig(A)print "First tuple of eig", eigenvaluesprint "Second tuple of eig\n", eigenvectorsfor i in range(len(eigenvalues)):print "Left", np.dot(A, eigenvectors[:,i]) print "Right", eigenvalues[i] * eigenvectors[:,i] print下面来计算一个矩阵的特征值。
1.创建矩阵。
下列代码将创建一个矩阵:
A = np.mat("3 -2;1 0")print "A\n", A下面的矩阵即刚才创建的矩阵。
A[[ 3 -2][ 1 0]]
2.利用e``ig()函数计算特征值。
这时,我们可以使用eig()子例程:
print "Eigenvalues", np.linalg.eigvals(A)该矩阵的特征值如下:
Eigenvalues [ 2. 1.] 3.利用eig()``函数取得特征值和特征向量。
利用eig()函数,可以得到特征值和特征向量。注意,该函数返回的是一个元组,其第一个元素是特征值,第二个元素为相应的eigenvectors,其以面向列的方式 排列:
eigenvalues, eigenvectors = np.linalg.eig(A)print "First tuple of eig", eigenvaluesprint "Second tuple of eig\n", eigenvectors特征值eigenvalues和特征向量eigenvectors的值为:
First tuple of eig [ 2. 1.]Second tuple of eig[[ 0.89442719 0.70710678][ 0.4472136 0.70710678]] 4.验算结果。
通过dot()函数计算特征值方程式Ax = ax两边的值,就可以对结果进行验算:
for i in range(len(eigenvalues)):print "Left", np.dot(A, eigenvectors[:,i]) print "Right", eigenvalues[i] * eigenvectors[:,i] print输出内容如下所示:
Left [[ 1.78885438][ 0.89442719]]Right [[ 1.78885438] [ 0.89442719]]Left [[ 0.70710678] [ 0.70710678]]Right [[ 0.70710678] [ 0.70710678]]