使用python求解特征值与特征向量

#使用python求解特征值与特征向量
问题描述:
求解矩阵[[1.25,0.375,0],[0.375,1.25,-0.5],[0,-0.5,0.875]]的特征值与特征向量

参考链接1:
百度经验:python线性代数—求方阵的特征值特征向量

利用python求解方阵特征值与特征向量的方法及代码实现

>>>import numpy as np      ##引入numpy模块
>>>x=numpy.diag((1,2,3))   ##写入对角阵x
>>>x                       ##输出对角阵x
array([[1,0,0],
[0,2,0],
[0,0,3]])
>>>a,b=numpy.linalg.elg(x) ##特征值赋值给a,对应特征向量赋值给b 
>>>a                       ##特征值 1 2 3
array([1.,2.,3.])
>>>b                       ##特征向量
array([1.,0.,0.],
[0.,1.,0.],
[0.,0.,1.])  

局限性:使用函数numpy.diag( )产生的是对角阵,实际情况都是要处理一般方阵。关于numpy.diag( )的用法可以参考numpy.diag 使用说明

参考链接2:
科学计算python VS matlab
介绍python进行矩阵运算的各种函数

a2=np.array([[1,2,3],[2,3,4]])   #建立一个二维数组
b2=np.array([[1,2,3],[2,3,4]],dtype=int)  #可以输出指定数据类型
np.linalg.eig(a2)                #返回矩阵a2的特征值与特征向量

针对开头的问题,求解代码如下图所示:
问题求解代码

参考链接3:
特征值与特征向量的雅克比算法C++实现

没有比较就不知道,使用python求解特征值问题多么简单!
链接3是使用C++求解特征值的方法,虽然有点复杂,代码多,个人感觉,有必要看一看,以认识具体的实现过程。

  • 15
    点赞
  • 40
    收藏
  • 打赏
    打赏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论 5

打赏作者

江州月

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值