运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。
实现 LRUCache 类:LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
进阶:你是否可以在 O(1) 时间复杂度内完成这两种操作?
示例:
输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4
思考:关键是处理好插入操作,当插入后保证已有的数据有序,当已有数据达到capacity后,我们选择最久没有“使用”过得数字删除。由于数据保存是使用key value形式的,也就是用字典保存,如何保证字典有序,用链表保存顺序信息。python里面是没有链表的。通过手动实现一个双向链表进行保存。(方法2)或者使用直接使用collections.OrderDict(方法1)。
方法一:
from collections import OrderedDict
class LRUCache(object):
def __init__(self, capacity):
"""
:type capacity: int
"""
self.capacity = capacity
self.orderdict = OrderedDict()
def get(self, key):
"""
:type key: int
:rtype: int
"""
if key not in self.orderdict:return -1
res = self.orderdict[key]
self.orderdict.pop(key)
self.orderdict[key] = res
return res
def put(self, key, value):
"""
:type key: int
:type value: int
:rtype: None
"""
if key in self.orderdict:self.orderdict.pop(key)
if len(self.orderdict)==self.capacity:
self.orderdict.popitem(False)
self.orderdict[key] = value
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
注:关于collection.OrderedDict链表字典的使用:
保证插入的数据有序,同时可以弹出头部和尾部元素。
from collections import OrderedDict
a = OrderedDict()
a['a'] = 1
a['b'] = 2
a['c'] = 3
a.popitem(False)# 弹出最早插入的元素 OrderedDict([('b', 2), ('c', 3)])
a.popitem()# 弹出最早插入的元素 OrderedDict([('a', 1), ('b', 2)])
#######################
######################popitem()实现源码##########
def popitem(self, last=True):
'''od.popitem() -> (k, v), return and remove a (key, value) pair.
Pairs are returned in LIFO order if last is true or FIFO order if false.
'''
if not self:
raise KeyError('dictionary is empty')
key = next(reversed(self) if last else iter(self))
value = self.pop(key)
return key, value
方法二:
对于保证有序的问题,可以手动实现一个双向链表。get() put()操作后都将访问的元素放在链表的头部,用链表的操作是这里有很多插入删除操作,数组需要多次搬移。同时维护一个字典,保存key-node形式。node为链表中的节点。
为了更快找到头、尾。链表的头和尾单独保存。例如移动到头部可以立刻找到位置,删除尾部元素也可以o(1)找到。
class NodeList(object):
def __init__(self,key=0,val=0):
self.key = key
self.val = val
self.pre = None
self.next = None
class LRUCache(object):
def __init__(self, capacity):
"""
:type capacity: int
"""
self.cache = {}
self.capacity = capacity
self.size = 0
self.head = NodeList()
self.tail = NodeList()
self.head.next = self.tail
self.tail.pre = self.head
def get(self, key):
"""
:type key: int
:rtype: int
"""
if key not in self.cache:
return -1
self.moveTohead(self.cache[key])
return self.cache[key].val
def put(self, key, value):
"""
:type key: int
:type value: int
:rtype: None
"""
if key not in self.cache:
node = NodeList(key,value)
self.addTohead(node)
self.cache[key] = node
self.size+=1
if self.size>self.capacity:
node = self.removeTail()
self.cache.pop(node.key)
self.size-=1
else:
oldnode = self.cache[key]
oldnode.val = value
self.moveTohead(oldnode)
def removeNode(self,node):
node.pre.next = node.next
node.next.pre = node.pre
def addTohead(self,node):
node.pre = self.head
node.next = self.head.next
self.head.next.pre = node
self.head.next = node
def moveTohead(self,node):
self.removeNode(node)
self.addTohead(node)
def removeTail(self):
node = self.tail.pre
self.removeNode(node)
return node
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)