给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
https://leetcode-cn.com/problems/edit-distance/solution/bian-ji-ju-chi-by-leetcode-solution/
思考:假设存在字符串A 和 字符串B,A的前i个字符到B的前j个字符的编辑距离表示为d[i][j]
则存在d[i][j] = min(d[i-1][j]+1,d[i][j-1]+1,d[i-1][j-1]+1) A[i]!=B[j]
或d[i][j] = min(d[i-1][j]+1,d[i][j-1]+1,d[i-1][j-1]) A[i]==B[j]
重点理解,从d[i-1][j] 推导的d[i][j]的过程,因为d[i-1][j]代表了A的前i-1个字符到B前j的编辑距离,则Ai 到 Bj,相当于在Bj后再增加一个字符与A[i]对应。也就是d[i-1][j]+1
d[i-1][j]同理分析。d[i-1][j-1],在修改Ai,使其和 Bj相同。
class Solution(object):
def minDistance(self, word1, word2):
"""
:type word1: str
:type word2: str
:rtype: int
"""
#d[i][j] 字符串A前i 到字符串B前j个的编辑距离
#d[i][j] = min(d[i-1][j]+1,d[i][j-1]+1,d[i-1][j-1]+1)
m = len(word1)+1
n = len(word2)+1
d = []
for i in range(m):
d.append([0]*n)
for i in range(1,n):
d[0][i] = i
for i in range(1,m):
d[i][0] = i
for i in range(1,m):
for j in range(1,n):
if word1[i-1]==word2[j-1]:
d[i][j] = min(min(d[i-1][j]+1,d[i][j-1]+1),d[i-1][j-1])
else:
d[i][j] = min(min(d[i-1][j]+1,d[i][j-1]+1),d[i-1][j-1]+1)
return d[m-1][n-1]