原标题:用python对汽车油耗进行数据分析
- 从http://fueleconomy.gov/geg/epadata/vehicles.csv.zip
下载汽车油耗数据集并解压
- 进入jupyter notebook(ipython notebook)并新建一个New Notebook
- 输入命令
[python]view plaincopy
importpandas as pd
importnumpy as np
fromggplotimport*
importmatplotlib.pyplot as plt
%matplotlib inline
vehicles = pd.read_csv("vehicles.csv")
vehicles.head按下Shift +Enter 键,可以看到如下结果:
其中 pandas中Data Frame类的边界方法head,查看一个很有用的数据框data frame的中,包括每列的非空值数量和各列不同的数据类型的数量。
描述汽车油耗等数据
- 查看有多少观测点(行)和多少变量(列)
- 查看年份信息
len(pd.unique(vehicles.years))
min(vehicles.year)
max(vehicles.year)
- 查看燃料类型
pd.value_counts(vehicles.fuelTypel)
- 查看变速箱类型
pd.value_counts(vehicles.trany)
trany变量自动挡是以A开头,手动挡是以M开头;故创建一个新变量trany2:
vehicles['trany2'] = vehicles.trany.str[0]
pd.value_counts(vehicles.trany2)
同理可以查看其它特征数据
分析汽车油耗随时间变化的趋势
- 先按照年份分组
grouped = vehicle.groupby('year')
- 再计算其中三列的均值
averaged= grouped['comb08', 'highway08', 'city08'].agg([np.mean])
- 为方便分析,对其进行重命名,然后创建一个‘year’的列,包含该数据框data frame的索引
averaged.columns = ['comb08_mean', 'highwayo8_mean', 'city08_mean']
averaged['year'] = averaged.index
- 使用ggplot包将结果绘成散点图
print ggplot(averaged, aes('year', 'comb08_mean')) + geom_point(colour='steelblue') + xlab("Year") +
ylab("Average MPG") + ggtitle("All cars")
- 去除混合动力汽车
criteria1 = vehicles.fuelType1.isin(['Regular Gasoline', 'Premium Gasoline', 'Midgrade Gasoline'])
criteria2 = vehicles.fuelType2.isnull()
criteria3 = vehicles.atvType != 'Hybrid'
vehicles_non_hybrid = vehicles[criteria1 & criteria2 & criteria3]
- 将得到的数据框data frame按年份分组,并计算平均油耗
grouped = vehicles_non_hybrid.groupby(['year'])
averaged = grouped['comb08'].agg([np.mean])
averaged['hahhahah'] = averaged.index
- 查看是否大引擎的汽车越来越少
pd.unique(vehicles_non_hybrid.displ)
- 去掉nan值,并用astype方法保证各个值都是float型的
criteria = vehicles_non_hybrid.displ.notnull()
vehicles_non_hybrid = vehicles_non_hybrid[criteria]
vehicles_non_hybrid.loc[:,'displ'] = vehicles_non_hybrid.displ.astype('float')
criteria = vehicles_non_hybrid.comb08.notnull()
vehicles_non_hybrid = vehicles_non_hybrid[criteria]
vehicles_non_hybrid.loc[:,'comb08'] = vehicles_non_hybrid.comb08.astype('float')
- 最后用ggplot包来绘图
print ggplot(vehicles_non_hybrid, aes('displ', 'comb08')) + geom_point(color='steelblue') +
xlab('Engine Displacement') + ylab('Average MPG') + ggtitle('Gasoline cars')
- 查看是否平均起来汽车越来越少了
grouped_by_year = vehicles_non_hybrid.groupby(['year'])
avg_grouped_by_year = grouped_by_year['displ', 'comb08'].agg([np.mean])
- 计算displ和conm08的均值,并改造数据框data frame
avg_grouped_by_year['year'] = avg_grouped_by_year.index
melted_avg_grouped_by_year = pd.melt(avg_grouped_by_year, id_vars='year')
- 创建分屏绘图
p = ggplot(aes(x='year', y='value', color = 'variable_0'), data=melted_avg_grouped_by_year)
p + geom_point() + facet_grid("variable_0",scales="free") #scales参数fixed表示固定坐标轴刻度,free表示反馈坐标轴刻度
==========================================很皮的更新分隔线==========================================
调查汽车的制造商和型号
接下来的步骤会引导我们继续深入完成数据探索
- 首先查看cylinders变量有哪些可能的值
pd.unique(vehicles_non_hybrid.cylinders)
- 我们再将cylinders变量转换为float类型,这样可以轻松方便地找到data frame的子集
vehicles_non_hybrid.cylinders = vehicles_non_hybrid.cylinders.astype('float')
pd.unique(vehicles_non_hybrid.cylinders)
- 现在,我们可以查看各个时间段有四缸引擎汽车的品牌数量
vehicles_non_hybrid_4 = vehicles_non_hybrid[(vehicles_non_hybrid.cylinders==4.0)]
import matplotlib.pyplot as plt
%matplotlib inline
grouped_by_year_4_cylinder =
vehicles_non_hybrid_4.groupby(['year']).make.nunique()
fig = grouped_by_year_4_cylinder.plot()
fig.set_xlabel('Year')
fig.set_ylabel('Number of 4-Cylinder Maker')
随后,print fig 显示出图像,参见下图:
分析:
我们可以从上图中看到,从1980年以来四缸引擎汽车的品牌数量呈下降趋势。然而,需要注意的是,这张图可能会造成误导,因为我们并不知道汽车品牌总数是否在同期也发生了变化。为了一探究竟,我们继续一下操作。
- 查看各年有四缸引擎汽车的品牌的列表,找出每年的品牌列表
grouped_by_year_4_cylinder = vehicles_non_hybrid_4.groupby(['year'])
unique_makes = []
for name, group in grouped_by_year_4_cylinder:
unique_makes.append(set(pd.unique(group['make'])))
unique_makes = reduce(set.intersection, unique_makes)
print unique_makes
我们发现,在此期间只有12家制造商每年都制造四缸引擎汽车。
接下来,我们去发现这些汽车生产商的型号随时间的油耗表现。这里采用一个较复杂的方式。首先,创建一个空列表,最终用来产生布尔值Booleans。我们用iterrows生成器generator遍历data frame中的各行来产生每行及索引。然后判断每行的品牌是否在此前计算的unique_makes集合中,在将此布尔值Blooeans添加在Booleans_mask集合后面。
- 最终选取在unique_makes集合中存在的品牌
boolean_mask = []
for index, row in vehicles_non_hybrid_4.iterrows():
make = row['make']
boolean_mask.append(make in unique_makes)
df_common_makes = vehicles_non_hybrid_4[boolean_mask]
- 先将数据框data frame按year和make分组,然后计算各组的均值
df_common_makes_grouped = df_common_makes.groupby(['year', 'make']).agg(np.mean).reset_index()
- 最后利用ggplot提供的分屏图来显示结果
ggplot(aes(x='year', y='comb08'), data = df_common_makes_grouped)
+ geom_line() + facet_wrap('make')
结果参见下图:
责任编辑: