python pandas dataframe 合并_Python基础 | pandas中dataframe的整合与形变(merge & reshape)

本文详细介绍了Python中DataFrame的常用操作,包括数据读取、抽样、合并(concat、append、merge、join)、行列转置、透视表(pivot_table)以及stack和unstack方法。通过实例展示了如何进行数据清洗、合并和转换,对于数据分析师来说是重要的参考资料。
摘要由CSDN通过智能技术生成

本文示例数据下载,密码:vwy3

import pandas as pd

# 数据是之前在cnblog上抓取的部分文章信息

df = pd.read_csv('./data/SQL测试用数据_20200325.csv',encoding='utf-8')

# 为了后续演示,抽样生成两个数据集

df1 = df.sample(n=500,random_state=123)

df2 = df.sample(n=600,random_state=234)

# 保证有较多的交集

# 比例抽样是有顺序的,不加random_state,那么两个数据集是一样的

行的union

pd.concat

pd.concat主要参数说明:

要合并的dataframe,可以用[]进行包裹,e.g. [df1,df2,df3];

axis=0,axis是拼接的方向,0代表行,1代表列,不过很少用pd.concat来做列的join

join='outer'

ignore_index: bool = False,看是否需要重置index

如果要达到union all的效果,那么要拼接的多个dataframe,必须:

列名名称及顺序都需要保持一致

每列的数据类型要对应

如果列名不一致就会产生新的列

如果数据类型不一致,不一定报错,要看具体的兼容场景

df2.columns

输出:

Index(['href', 'title', 'create_time', 'read_cnt', 'blog_name', 'date', 'weekday', 'hour'], dtype='object')

# 这里故意修改下第2列的名称

df2.columns = ['href', 'title_2', 'create_time', 'read_cnt', 'blog_name', 'date','weekday', 'hour']

print(df1.shape,df2.shape)

# inner方法将无法配对的列删除

# 拼接的方向,默认是就行(axis=0)

df_m = pd.concat([df1,df2],axis=0,join='inner')

print(df_m.shape)

输出:

(500, 8) (600, 8)

(1100, 7)

# 查看去重后的数据集大小

df_m.drop_duplicates(subset='href').shape

输出:

(849, 7)

df.append

和pd.concat方法的区别:

append只能做行的union

append方法是outer join

相同点:

append可以支持多个dataframe的union

append大致等同于 pd.concat([df1,df2],axis=0,join='outer')

df1.append(df2).shape

输出:

(1100, 9)

df1.append([df2,df2]).shape

输出:

(1700, 9)

列的join

pd.concat

pd.concat也可以做join,不过关联的字段不是列的值,而是index

也因为是基于index的关联,所以pd.concat可以对超过2个以上的dataframe做join操作

# 按列拼接,设置axis=1

# inner join

print(df1.shape,df2.shape)

df_m_c = pd.concat([df1,df2], axis=1, join='inner')

print(df_m_c.shape)

输出:

(500, 8) (600, 8)

(251, 16)

这里是251行,可以取两个dataframe的index然后求交集看下

set1 = set(df1.index)

set2 = set(df2.index)

set_join = set1.intersection(set2)

print(len(set1), len(set2), len(set_join))

输出:

500 600 251

pd.merge

pd.merge主要参数说明:

left, join操作左侧的那一个dataframe

right, join操作左侧的那一个dataframe, merge方法只能对2个dataframe做join

how: join方式,默认是inner,str = 'inner'

on=None 关联的字段,如果两个dataframe关联字段一样时,设置on就行,不用管left_on,right_on

left_on=None 左表的关联字段

right_on=None 右表的关联字段,如果两个dataframe关联字段名称不一样的时候就设置左右字段

suffixes=('_x', '_y'), join后给左右表字段加的前缀,除关联字段外

print(df1.shape,df2.shape)

df_m = pd.merge(left=df1, right=df2\

,how='inner'\

,on=['href','blog_name']

)

print(df_m.shape)

输出:

(500, 8) (600, 8)

(251, 14)

print(df1.shape,df2.shape)

df_m = pd.merge(left=df1, right=df2\

,how='inner'\

,left_on = 'href',right_on='href'

)

print(df_m.shape)

输出:

(500, 8) (600, 8)

(251, 15)

# 对比下不同join模式的区别

print(df1.shape,df2.shape)

# inner join

df_inner = pd.merge(left=df1, right=df2\

,how='inner'\

,on=['href','blog_name']

)

# full outer join

df_full_outer = pd.merge(left=df1, right=df2\

,how='outer'\

,on=['href','blog_name']

)

# left outer join

df_left_outer = pd.merge(left=df1, right=df2\

,how='left'\

,on=['href','blog_name']

)

# right outer join

df_right_outer = pd.merge(left=df1, right=df2\

,how='right'\

,on=['href','blog_name']

)

print('inner join 左表∩右表:' + str(df_inner.shape))

print('full outer join 左表∪右表:' + str(df_full_outer.shape))

print('left outer join 左表包含右表:' + str(df_left_outer.shape))

print('right outer join 右表包含左表:' + str(df_right_outer.shape))

输出:

(500, 8) (600, 8)

inner join 左表∩右表:(251, 14)

full outer join 左表∪右表:(849, 14)

left outer join 左表包含右表:(500, 14)

right outer join 右表包含左表:(600, 14)

df.join

df.join主要参数说明:

other 右表

on 关联字段,这个和pd.concat做列join一样,是关联index的

how='left'

lsuffix='' 左表后缀

rsuffix='' 右表后缀

print(df1.shape,df2.shape)

df_m = df1.join(df2, how='inner',lsuffix='1',rsuffix='2')

df_m.shape

输出:

(500, 8) (600, 8)

(251, 16)

行列转置

# 数据准备

import math

df['time_mark'] = df['hour'].apply(lambda x:math.ceil(int(x)/8))

df_stat_raw = df.pivot_table(values= ['read_cnt','href']\

,index=['weekday','time_mark']\

,aggfunc={'read_cnt':'sum','href':'count'})

df_stat = df_stat_raw.reset_index()

df_stat.head(3)

如上所示,df_stat是两个维度weekday,time_mark

以及两个计量指标 href, read_cnt

pivot

1977069-20200404224719083-1086734497.png

# pivot操作中,index和columns都是维度

res = df_stat.pivot(index='weekday',columns='time_mark',values='href').reset_index(drop=True)

res

stack & unstack

stack则是将层级最低(默认)的column转化为index

unstack默认是将排位最靠后的index转成column(column放到下面)

1977069-20200404224754525-1496237473.png

1977069-20200404224803192-1465526029.png

1977069-20200404224815129-1283620786.png

# pandas.pivot_table生成的结果如下

df_stat_raw

# unstack默认是将排位最靠后的index转成column(column放到下面)

df_stat_raw.unstack()

# unstack也可以指定index,然后转成最底层的column

df_stat_raw.unstack('weekday')

# 这个语句的效果是一样的,可以指定`index`的位置

# stat_raw.unstack(0)

# stack则是将层级醉倒的column转化为index

df_stat_raw.unstack().stack().head(5)

# 经过两次stack后就成为多维表了

# 每次stack都会像洋葱一样将column放到左侧的index来(放到index序列最后)

df_stat_raw.unstack().stack().stack().head(5)

输出:

weekday time_mark

1 0 href 4

read_cnt 2386

1 href 32

read_cnt 31888

2 href 94

dtype: int64

pd.DataFrame(df_stat_raw.unstack().stack().stack()).reset_index().head(5)

1977069-20200404224834242-705351825.png

melt

melt方法中id_vals是指保留哪些作为维度(index),剩下的都看做是数值(value)

除此之外,会另外生成一个维度叫variable,列转行后记录被转的的变量名称

1977069-20200404224848327-1711812023.png

print(df_stat.head(5))

df_stat.melt(id_vars=['weekday']).head(5)

df_stat.melt(id_vars=['weekday','time_mark']).head(5)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值