目标:将区域内的小洞填充
因为c++算法还不会,决定先用matlab试试,找到一个imfill可以实现区域的填充
Matlab里的实现
clear all;clc;
I=im2bw(imread('E:\免疫组化\pic\tt.bmp'));
figure,imshow(I);
I1=imfill(I,'holes');
figure,imshow(I1);
效果图
但是二值免疫图的效果就不太理想
原因也不是很清楚?是不是因为图像太大的缘故呢?
再来看在c++中,利用opencv实现
首先要倒入opencv路径神马的,这一步骤大神已经帮我弄好了,具体参见:http://www.cnblogs.com/freedomshe/archive/2012/04/25/2470540.html
然后要在头文件中加入:
#include
using namespace cv;
新建了一个函数testcv(LPALGINFO lpSrc, LPALGINFO
lpDst)传入原图,传出目标图像
第一部分,将lpSrc里的图像数据存到lpt指针数组中,再将BYTE*类型转为opencv里的IplImage*类型。
for(
i=0;i
{
lpt[i]=lpSrc->bpValue[i*3];
}
IplImage*
img=cvCreateImage(cvSize(nW,nH),IPL_DEPTH_8U,1);
cvSetData(img,lpt,nW);//
第二部分,找轮廓并填充轮廓
这一部分利用的是opencv里现成的函数,其实想自己写算法实现的。要注意的一点是,这两个函数都是对单通道的二值图像进行的操作。所以在第一部分的传入图像数据和第三部分的传出图像数据时要注意单通道。
Mat
src(img);//这里将IplImage*类型转为Mat类型
vector >
contours;
vector
hierarchy;
//寻找轮廓函数
findContours(src, contours, hierarchy, CV_RETR_EXTERNAL,
CV_CHAIN_APPROX_NONE);
if(
!contours.empty() && !hierarchy.empty() )
{
for (int idx=0;idx < contours.size();idx++)
{
填充轮廓函数
drawContours(src,contours,idx,Scalar::all(255),CV_FILLED,8);
}
}
img=&IplImage(src) //这里将Mat类型转为IplImage*类型
第三部分,将图像数据传到目标图像中
for(int
j=0;j
{
for(i=0;i
{
lpDst->bpValue[j*nW*3+i*3]=(img->imageData)[j*nW+i];
lpDst->bpValue[j*nW*3+i*3+1]=(img->imageData)[j*nW+i];
lpDst->bpValue[j*nW*3+i*3+2]=(img->imageData)[j*nW+i];
}
}
效果图:
第一个测试有边缘噪声,第二个又有条对角线,很奇怪在形态学算法中就出现了,真是阴魂不散。。。
下一步就是自己用c++实现啦~~~~