基于matlab的一类运输优化问题求解
基于MATLAB 的一类运输优化问题求解
王丽娟
华东交通大学交通运输与经济研究所,南昌(330013 )
E-mail :haiwlj@163.com
摘 要:供应点的选取及调运物资数量的确定是运输决策中的关键性问题。本文通过对运
输决策问题中基本情况的研究,对运力有限情况下单个需求点单一物资运输方案进行了分
析,考虑运达概率、损失度对运输优化的影响,采用优化技术,以运输时间有限、每批货
物运输的损失度小于规定的上限和成功运达的可能性高于规定的概率为约束条件,供应点
最少、损失度最低为目标建立了运输优化数学模型。利用MATLAB 编写0 -1 整数规划函
数linprog01.m 和调用其优化工具箱中非线性约束最优化函数fmincon 对模型进行求解,得
出了最优运输方案,验证了MATLAB 强大的数值计算能力对一类运输优化问题求解的有
效性。
关键词:运输优化;供应点;运达概率;损失度;MATLAB
中图分类号:TP18 文献标识码:A
0. 引言
在物流领域的运输决策中,供应点的选取及调运的物资数量常常是我们必须要面对的
一个现实问题,人们在做运输决策时要受到当时的环境、条件以及决策的目的制约,常常
是制约的因素不同,人们做出的决策也不一样[1] 。多供应点对单一需求点在运力有限的情
况下进行供给是运输问题中一种最基本也是较常见的情况[2] ,本文力图通过对此种情况的
探讨,为更复杂条件下运输问题的研究打下基础。为了解决非常状态下(如战争、自然灾害
等)物资不能正常运达的问题,与以往这方面研究模型不同的是,本文在模型中考虑了运达
概率、损失度对运输优化的影响。
1. 模型描述
物资需求运输描述如下:
设A 为物资需求点,A ,A ,,A 为m 个可提供物资的供应点, S 为物资需求量,
1 2 m
A 的最大物资供应量为a (a >0),i 1,,2 ,m 。A 的单次最大运力限额为 ( >0) ,
i i i δ δ
i i i
物资从 运到 需要的时间为 (>0) ,供应量为x ,损失率为 ,成功运达的概率为 ,
A i A ti i qi pi
n 0 ,1 (0 表示不由 A 供应点供货,1 表示由 A 供应点供货),为方便表述,不妨设
i i i
[3]
t ,,t ,t 。决策方案可表示为:运输的决策方案 就是确定物资供应点及各提供的物资
1 2 n
量,因而任一方案B 可用集合的形式表示为:
B { ( A , x ) ;( A , x ) ;;( A , x ) } (1)
1 1 2 2 m m
0 ≤x ≤a , 且0 ≤x ≤δ
i i i i
1