模为2的逆元是什么_浅谈模质数意义下的乘法逆元

什么是乘法逆元

若整数\(b,m\)互质,并且\(b|a\),若存在一个整数\(x\),使得\(a / b \equiv a \ast x (mod \text{ } m)\),称\(x\)为 \(b\)的模\(m\)乘法逆元。

乘法逆元的用处

有时候,我们需要求\(a/b \text{ } mod \text{ } p\),用朴素的方法,我们只能在\(a\)上不断加\(p\),直到它能被 bb 整除为止,当\(a,b,p\)都很大的时候,自然是凉凉了。这时,我们就可以用逆元方便的求解了。

乘法逆元的求法

进入到了本文最关键的部分,如何求乘法逆元?

费马小定理

费马小定理:当\(p\)是质数的时候,$a^{p-1} \equiv 1 (mod \text{ } p) $

那么将\(a^{p-1}\)拆开来,就得到了\(a \ast a^{p-2} \equiv (mod \text{ } p)\)

所以,\(a^{p-2}\)就是\(a\)模\(p\)意义下的乘法逆元。

缺点:用快速幂计算,当\(p\)比较大的时候,速度比较慢。

代码:

#include

#include

#include

using namespace std;

typedef long long ll;

ll n, p;

ll ksm(ll a, ll b)

{

ll ans = 1;

for (; b; b >>= 1) {

if (b & 1)

ans = ans * a % p;

a = a * a % p;

}

return ans;

}

int main()

{

freopen("a.in", "r", stdin);

freopen("a.out", "w", stdout);

cin >> n >> p;

for (int i = 1; i <= n; ++i) {

printf("%lld\n", ksm(i, p - 2));

}

return 0;

}

扩展欧几里得算法

求\(a \ast x \equiv 1 (mod \text{ } m)\)的解\(inv(x)\),等价于求解\(a \ast x + b \ast y =1\)。用扩展欧几里得算法求出一组特解\(x_0, y_0\),则\(x_0\)是原方程的一个解,而方程的通解则为所有模\(m\)与\(x_0\)同余的整数,通过取模操作把解的范围移动到\(1~p\)之间即可。

代码:

#include

#include

#include

using namespace std;

typedef long long ll;

ll n, p;

void exgcd(ll a, ll b, ll& x, ll& y)

{

if (b == 0) {

x = 1, y = 0;

return;

}

exgcd(b, a % b, x, y);

ll z = x;

x = y, y = z - y * (a / b);

return;

}

int main()

{

cin >> n >> p;

for (int i = 1; i <= n; ++i) {

ll x, y;

exgcd(i, p, x, y);

x = (x % p + p) % p;

cout << x << endl;

}

return 0;

}

线性递推(可以求多个)

这是一个神奇的过程……

假设我们现在要求\(k\)的乘法逆元,

令 \(a \ast k + b = p\)

\[b \ast inv(b) \equiv 1 (mod \text{ } p)

\]

把\(b=p-a\ast k\)代入,可以得到

\[(p-ak)\ast inv(b) \equiv 1 (mod \text{ } p)

\]

那么

\[p \ast inv(b) - a \ast k \ast inv(b) \equiv 1 (mod \text{ } p)

\]

在\((mod \text{ } p)\)的意义下,\(p \equiv 0 (mod \text{ } p)\),所以\(p \ast inv(b)\)可以直接去掉

\[-a \ast k \ast inv(b) \equiv 1 (mod \text{ } p)

\]

观察\(a \ast k + b = p\)可以发现,\(a=\lfloor p/k \rfloor\),\(b=p \mod k\)

\[-(p/k) \ast inv(p \text{ } mod \text{ } k) \ast k \equiv 1 (mod \text{ } p)

\]

\[-(p/k) \ast inv(p \text{ } mod \text{ } k) \equiv inv(k) (mod \text{ } p)

\]

这样,我们就得了递推式,在实际的代码实现中得加上 \(p\) 来去掉负号,也就是

\[(p-p/k) \ast inv(p \text{ } mod \text{ } k) \equiv inv(k) (mod \text{ } p)

\]

代码:

#include

#include

#include

#include

using namespace std;

typedef long long ll;

ll n, p, inv[maxn];

int main()

{

freopen("a.in", "r", stdin);

freopen("a.out", "w", stdout);

cin >> n >> p;

inv[1] = 1;

for (int i = 2; i <= n; ++i)

inv[i] = (ll)(p - p / i) * inv[p % i] % p;

for (int i = 1; i <= n; ++i)

printf("%lld\n", inv[i]);

return 0;

}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值