我有一个非常大的.xml文件,我正在尝试制作一个新的.xml文件,该文件只包含了该较大文件内容的一小部分。我想指定一个属性(在我的情况下为itemID),并为其指定一些特定的值,然后它将除去所有具有那些itemID及其子元素的元素。
我的大型.xml文件如下所示:
2013-02-27 17:00:18
2013-02-27 23:00:18
该文件大约有9万行,大约9兆字节。
注意如何有itemID,某些项目类型可以(但不总是)在其中包含更多项目,并且这些子项也有自己的itemID。我正在尝试获取一些特定的itemID和他们的孩子,而忽略其他所有ID。
我使用了此答案中的代码,它使我非常接近。除了将我使用的itemID的子项排除在外之外,它是完美的。
我的代码如下所示:
import lxml.etree as le
##Take this big .xml file and pull out just the parts we want then write those to a new .xml file##
with open(filename,'r') as f:
doc=le.parse(f)
for elem in doc.xpath('//*[attribute::itemID]'):
if elem.attrib['itemID']=='1004072840841':
elem.attrib.pop('itemID')
else:
parent=elem.getparent()
parent.remove(elem)
print(le.tostring(doc))
这是结果打印出来的样子:
2013-03-01 21:46:52
2013-03-02 03:46:53
我希望它看起来像这样:
2013-03-01 21:46:52
2013-03-02 03:46:53
我对代码的理解不够充分,看不到需要更改什么才能包含我要搜索的itemID的子代。另外,理想情况下,我将能够放入多个itemID,它将除去那些itemID及其子对象之外的所有对象。这意味着它将需要保留itemID=[number]row属性(以便在使用此xml文件时可以使用xPath引用特定的itemID及其子级。)
所以我的主要问题是关于如何将搜索到的itemID的子项包含在生成的.xml中。我的第二个问题是关于如何同时对一个以上的itemID执行此操作(这样,生成的.xml文件将删除除那些itemID及其子对象之外的所有对象)。
更新:丑陋的解决方案
我发现那elem.attrib.pop('itemID')部分是取出itemID的部分,由于我想拥有多个itemID,而他们的孩子仍然留着,所以我需要保留它,所以我取出了那部分。我试图找到一种方法来跳过带有正在搜索的itemID的行的子项,而我想到的是用一个属性标记每个人,然后我可以搜索并删除所有不存在的属性具有该属性。我不需要我做的flag属性,因此我继续将其用于此目的(因为当我尝试遍历它们时,尝试引入新属性遇到了关键错误。)孩子还不够,我还得给孩子的孩子打标签。
这是我的丑陋解决方案:
with open(filename,'r') as f:
doc=le.parse(f)
for elem in doc.xpath('//*[attribute::itemID]'):
if elem.attrib['itemID']=='1004072840841' or elem.attrib['itemID']=='1005279202146': # this or statement lets me get a resulting .xml file that has two itemIDs and their children
elem.attrib['flag']='Keep'
for child in elem.iterchildren():
child.attrib['flag']='Keep'
for c in child.iterchildren():
c.attrib['flag']='Keep'
else:
pass
for e in doc.xpath('//*[attribute::flag]'):
if e.attrib['flag']!='Keep':
parent=e.getparent()
parent.remove(e)
else:
pass
print(le.tostring(doc))
##This part writes the pruned down .xml to a file##
with open('test.xml', 'w') as t:
for line in le.tostring(doc):
t.write(line)
t.close
这个丑陋的解决方案涉及大量的数据迭代,我怀疑这不是完成此工作的最有效方法,但它确实有效。