梁敬彬梁敬弘兄弟出品
往期回顾
小朋友都能懂的人工智能⓵开篇大吉(上)
小朋友都能懂的人工智能⓵开篇大吉(中)
小朋友都能懂的人工智能⓵开篇大吉(下)
小朋友都能懂的人工智能②卷机神经网络初探(上)
小朋友都能懂的人工智能②卷机神经网络初探(中)
小朋友都能懂的人工智能②卷机神经网络初探(下)
小朋友都能懂的人工智能⓷ -惊世骇俗的阿“狗”故事(上)
小朋友都能懂的人工智能⓷ -惊世骇俗的阿“狗”故事(中)
小朋友都能懂的人工智能⓷ -惊世骇俗的阿“狗”故事(下)
小朋友都能懂的人工智能⓸ -狗大师的修仙之路(上)
12 裁剪才是王道
L:接下来我给大家讲一件趣事。有两位棋友展开一场特别较量。一位是拿过市冠军的围棋业余高手,一位是实力更为强大的围棋职业高手,比赛规则是业余棋手用时150分钟,而职业棋手则被限制为5秒内必须落子。此外,为避免职业棋手利用对手时间思考,还增设了对手落子前职业棋手只可看书不可看棋盘的规定。双方分先对弈,大家猜猜输赢。
众人认为,即便如此还是职业棋手赢面大。
L:大家猜对了。不过,你们说这局棋谁计算的更多呢?
B爸:业余棋手能拿全市冠军,其计算力自是不弱,加上思考时间充足,必然会完成大量计算。而职业高手5秒一步则根本没时间细算。肯定业余棋手算的多。
L:B爸说的有道理!这是不是说明算的多也不一定能赢。
C:围棋不是比计算吗,算的多为啥还赢不了?
L:输赢还是和棋力有关。棋力弱的思考的方向往往不太对,在错误的方向行棋,想的再多也不会有太好的结果,而棋力强的思考的方向往往是对的,在正确的方向行棋,即便无暇细算也不容易出现太差的结果。
C:原来如此啊。
C妈:会不会是150分钟还不够,如果给业余棋手更多的时间,让他把棋的各个方向都考虑一下,逐一比较选出最佳一手,这样应该能赢吧,毕竟职业棋手的思考时间太少了。
L:C妈,即便无限时也不可能各个方向都考虑的,围棋的复杂度太高了,遍历是绝无可能的。我们来评估一下围棋的复杂度。围棋棋盘有19*19=361个交叉点,A先行,有361种落子可能,B则有360种落子可能,接下来A有359个选择,以此类推…这样所有可能出现的流程数量可用361的阶乘来估计,大约为10的768次方,这里尚未考虑棋子被吃后,空出的地方依然可落子的情况。
不过很多流程实际是不会出现的,如禁着点不能落子,如不可能密密麻麻的把棋盘全摆满…剪裁后更为准确的评估结果是,围棋复杂度大约为10的360次方。可能大家对这个数字没概念,如果我说可观测宇宙所有原子的总数为10的80次方上下,这么一对比,是不是吓到你了。
A爸:难以置信!
L:早先的围棋对弈程序就是遍历的思路,由于不可能穷尽所有变化,所以不得不引入人为或随机性规则,这种模式以蒙特卡洛树搜索为代表,一直未取得突破。AlphaGo出现后,巧妙的将蒙特卡洛树搜索与深度学习结合,于是人类棋手就抵挡不住了。其核心在于:AlphaGo在下棋时能裁剪大部分无效的计算,从而将计算量大幅缩小。
C妈:那AlphaGo是如何裁剪?
L:那人类是如何裁剪的,如果职业棋手不具备很强的裁剪能力,如何5秒一步战胜市冠军?
C妈:是啊,这位职业棋手如何裁剪?
L:直觉!他一眼就识别出棋局好坏,一眼就看出局面大致应对方法。这种直觉也可以称之为棋感。
C妈:啊,怎样才能有这样的棋感?
L:训练出来的。职业棋手通过大量学习和对弈,在积累足够多经验后,就产生了棋感。
C:我明白了,AlphaGo和这位职业棋手一样,也有直觉。能一眼识别出棋局好坏,一眼看出局面大致应对方法。也是通过大量的学习和对弈训练出来的。
L:回答的太好了,完全正确!
未完待续…
小朋友都能懂的人工智能⓸ -狗大师的修仙之路(下)
系列回顾