spss正态性检验_参数检验与非参数检验如何用?

本文介绍了SPSS中进行参数检验和非参数检验的方法,特别是针对两个独立样本的正态性检验。当数据符合正态分布时,采用独立样本T检验,如英语专业与非英语专业英语成绩的显著差异分析。若数据不服从正态分布,则使用非参数检验,如Mann-Whitney U法。通过SPSS操作演示了检验过程及结果解读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、 参数检验——两个独立样本

什么是独立样本?

将研究对象随机的分配到两组中,分别接受不同的处理,或分别从两个总体中完全随机的抽取一部分个性进行研究,这样的样本就是独立样本。相应的T检验就是独立样本T检验。

什么时候运用参数检验,什么时候运用非参数检验呢?

需要进行正态性检验,服从正态分布则使用参数检验,不服从正态分布则使用非参数检验。

例如:比较英语专业和非英语专业的英语成绩是否存在显著的差异性

3a78e7d7daae6f3dea31bf812343eae1.png

正态性检验:

8ddf911c7c75ed2899ed217d8d7469c5.png
36c4fd2f1e4dfb08051e7f41d91ed392.png
96180491bf082d8bb7ef3ebfa30e7dc0.png

说明符合正态分布,于是选择参数检验。

SPSS软件进行独立样本T检验:

分析——比较均值——独立样本T检验——

4869c2ee4133551c37c896c147ebaa77.png
ff2b143b9f8cde9056e5d4616dd82b91.png

结果如下:

3871d5e8041cbbc3e6bd48f1b69a7a04.png

从图表可以看出,显著性是0.000,非常显著的,且英语专业英语成绩的均值是87,非英语专业的英语成绩均值是75,说明成绩是显著差异的。

2、 非参数检验——两个独立样本

cf00c7ff33677528d74a854458008d91.png

当正态性检验结果显示不符合正态分布时,则选择非参数检验。

SPSS非参数检验默认的是Mann-Whitney U 法。

f0789c671ad3dcb8baad91f06ef533a6.png
bceedc7ee91831b65f310e0c737e2a66.png

结果输出如下

f13c5960c52168d2586e5dfb975fe1d4.png

从图可以看出,显著性是0.016,是有统计学意义的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值