开运算和闭运算_第十讲 连续函数的运算

写在前面的话:

hello~这一讲主要内容是连续函数极限的求法,为求形式复杂的初等函数提供了依据。

有错误及时提出哦,我看到会纠正。

学习和思考让我们的生活过得更有意义,虽然我们不是天才,但是我们所积累的一点一滴都会成就未来更好的自己!而且我相信,没有所谓的天才,不要被那些“天才们“所吓倒,通过努力,我们也会越来越接近他们。小伙伴们,我们一起加油吧~

一、连续函数和、差、积、商的连续性

定理1:有限个在某点连续的函数的和,是一个在该点连续的函数。

证明:设

都在
处连续,根据函数连续的定义,有

,则

处连续。

定理2:有限个在某点连续的函数的乘积是一个在该点连续的函数。

证明:设

都在
处连续,根据函数连续的定义,有

,则

处连续。

定理3:两个在某点连续的函数的商是一个在该点连续的函数,只要分母在该点不为零。

证明:设

都在
处连续,根据函数连续的定义,有

,则

处连续。

这样我们就知道:若函数

在点
处连续,则它们的和、差、积、商(只要分母在
处不为零)都在
处连续。

例1.

都在区间
内连续,故
在它们的
定义域内连续。

例2.

,分子分母皆为连续函数,所以整个商函数在分母不为零的情况下处处连续,即当
时,函数处处连续。

,分子分母皆为连续函数,所以商函数在分母不为零的情况下处处连续,即当
时处处连续。

二、反函数(戳我了解)和复合函数的连续性

定理4:如果函数

在区间
上单调增加(或单调减少)且连续),那么它的反函数
也在对应的区间
上单调增加(或单调减少)且连续。
总之,单调连续的函数,它的反函数也是单调连续的。

例3.由于

在闭区间
上单调增加且连续,所以它的反函数
在闭区间
上也是单调增加且连续的,如下图:

60808d780fbc89ce59ceba6c7afdbf8a.png

3a06bc918f60180bc5047aeff8525b59.png

同样,

在闭区间
上单调减少且连续;
内单调增加且连续;
在区间
内单调减少且连续。
总之,反三角函数在它们的定义域内都是连续的。

定理5:设函数

时,极限存在且等于
,即
。而函数
在点
处连续,那么复合函数
时极限存在且等于
,即
。(
简言之,当
,里层函数在有极限,外层函数连续,那么,
)。

证明:对于外层函数

而言,因为
处连续,根据函数连续定义(戳我了解),有
① ,对①使用函数极限的定义:
,总存在
,使当
② 时,

对于内层函数

而言,
,由极限定义,对特给的
,必然也会
,有
,可见
满足②式,故
,我们把带有下划线的文字连城一句:对任意给定的
,存在
,使当
,有
,这不就是函数极限的定义(戳我了解)嘛~,所以
知乎视频​www.zhihu.com

注:

  • 在定理5中有
    ,故定理5的结论又可写成:

式表示,
在定理5的条件下,求复合函数极限
时,外层函数符的号
和极限符号可以
换序

式表示,在定理5的条件下,如果做这样一个变量替换
,那么求
就可以转化成
,此处

这两个结论方便日后直接使用。

  • 在定理5中,把
    ,换成
    ,仍有类似结论:
    ,不再证明。

例3.

解:

可以看作
复合而成,而里层函数
处有极限,即
,外层函数
,在
处连续,所以

定理6:

,在
处连续,且
,而函数
处连续,那么复合函数
点连续。(
简言之,连续函数的复合函数也连续。)

证明:由于外层函数

处连续,即
,根据极限定义,
,有
,当
时,

由于内层函数

处连续,即
,根据极限定义,对刚刚得到的
,必然也
(而这又对应于上部分证明过程中
时,
),所以,

我们把带有下划线的文字连成一句,即为极限定义,即

(函数在
处极限值等于在该点的函数值),所以复合函数
点连续。

例4.讨论函数

的连续性。

解:函数

可看作由
复合而成。
是连续的,
是处处连续的,所以复合函数
是连续的。

三、初等函数的连续性

前面证明了三角函数和反三角函数在定义域内是连续的,同样可以证明

是连续的。

由于

是单调连续的,而它的值域是
,由定理4可知,它的反函数对数函数
在区间
内单调且连续。

幂函数

的定义域因
而异,但不论
为何值,幂函数在
内是有定义的,下面证明幂函数在
内是连续的。事实上,当
时,
即函数可以看成
复合而成,由定理6,它在
内连续。

综上,基本初等函数在它们的定义域内是连续的。由于初等函数是由基本初等函数经过有限次四则运算或复合运算而来,而连续函数的和、差、积、商以及复合函数都是连续函数,因此初等函数在定义域内连续

初等函数的连续性为求极限提供了有效的方法(欲求某点的极限值只需求该点的函数值):如果

是初等函数,
为其定义域内的一点,则
极限值等于函数值
。例如:
是初等函数
的定义域
内的一点,所以
。下面再看几个初等函数求极限的例子:

例5.

解:

例6.

解:

例7.

解:

例8.

解:

例9.

解:

例10.

解:

例11.

解:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值