matlab图像处理之开运算闭运算(1)

matlab图像处理形态学滤波之开运算闭运算(1)

       刚入门的朋友估计对开闭运算还不太了解,首先先了解几个名词:

腐蚀:  是一种消除边界点,使边界向内部收缩的过程。可以用来消除小且无意义的物体。
 
膨胀:  是将与物体接触的所有背景点合并到该物体中,使边界向外部扩张的过程。可以用来填补物体中的空洞。 


开运算:  先腐蚀后膨胀的过程开运算。用来消除小物体、在纤细点处分离物体、平滑较大物 体的边界的同时并不明显改变其面积。开运算通常是在需要去除小颗粒噪声,以及断开目标物之间粘连时使用。其主要作用与腐蚀相似,与腐蚀操作相比,具有可以基本保持目标原有大小不变的优点。 


闭运算:  先膨胀后腐蚀的过程称为闭运算。用来填充物体内细小空洞、连接邻近物体、平滑 其边界的同时并不明显改变其面积。

       对一个图像先进行腐蚀运算然后再膨胀的操作过程称为开运算,它可以消除细小的物体、在纤细点处分离物体、平滑较大物体的边界时不明显的改变其面积。如果对一个图像先膨胀然后再收缩,我们称之为闭运算,它具有填充物体内细小的空洞、连接邻近物体、在不明显改变物体面积的情况下平滑其边界的作用。通常情况下,当有噪声的图像用阈值二值化后,所得到的边界是很不平滑的,物体区域具有一些错判的孔洞,背景区域散布着一些小的噪声物体,连续的开和闭运算可以显著的改善这种情况,这时候需要在连接几次腐蚀迭代之后,再加上相同次数的膨胀,才可以产生所期望的效果。

       所以,换一种说法,图像的开闭运算实质上是数学形态的非线性滤波去噪的一个过程。

       知道以上名词了我们就可以把我们的想法与之匹配,通过开闭运算来实现我们的目的。

       matlab程序如下:
i=imread('image.jpg');
i1=rgb2gray(i); %转灰度图像
i2=im2bw(i1);    %二值化搜索
i3 = bwmorph(i2,'close');  %闭运算
imshow(i3)
i4 = bwmorph(i2,'open');  %开运算
figure, imshow(i4)
%bwmorph还支持类似bothat tophat thin等操作个体看下help参数
%说明:前提条件是传入的图像应该是二值后的

更强大的有关腐蚀膨胀以及开闭运算的matlab程序参考链接:

http://blog.csdn.net/zhangyibo123456789/article/details/60957376


### Matlab图像处理运算运算 #### 运算定义与作用 运算是先腐蚀后膨胀的操作。这种操作可以消除小物体,在纤细点处分离物体,并且平滑较大物体的边界而不明显改变其面积[^2]。 #### 运算定义与作用 运算是先膨胀后腐蚀的过程。此过程能够填充物体内细小孔洞,连接邻近物体,并且同样具有平滑大物体边界的功效而不会显著影响其大小。 #### 膨胀与腐蚀基础函数介绍 在 MATLAB 中执行这些基本形态学变换主要依赖于 `imdilate` 和 `imerode` 函数: - **腐蚀 (Erosion)** 使用 `imerode(A,SE)` 对输入矩阵 A 应用结构元素 SE 进行腐蚀; - **膨胀 (Dilation)** 则通过调用 `imdilate(A,SE)` 来完成相同目的;其中 A 表示待处理的目标图像数据,SE 是指定形状和尺寸的结构化元素对象[^3]。 ```matlab % 创建一个简单的二值图像作为例子 bw = imread('circles.png'); se = strel('disk',5); % 定义圆形结构元 % 执行腐蚀操作 erodedBW = imerode(bw, se); % 显示始图象以及经过腐蚀后的效果对比 figure; subplot(1,2,1), imshow(bw); title('Original Image'); subplot(1,2,2), imshow(erodedBW); title('Eroded Image'); ``` #### 实现运算的具体步骤 为了实现运算,首先需要对目标图像应用一次腐蚀操作,然后再对该结果做一次膨胀恢复。MATLAB 提供了一个更简便的方式——直接利用内置命令 `imopen`: ```matlab openedImage = imopen(originalImage,strel(shape,size)); ``` 这里 `originalImage` 就是要被处理的对象,而 `strel()` 构造器用来生成特定类型的结构体元素用于控制如何实施形态变化。 #### 实现运算的具体步骤 对于运算来说,则相反地应该先是膨胀再接着腐蚀来达到预期的效果。幸运的是,MATLAB 同样提供了一条便捷路径即 `imclose` 命令来进行此类转换: ```matlab closedImage = imclose(originalImage,strel(shape,size)); ``` 上述代码片段中的参数含义同前文一致。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值