一、定义
return_sequences:默认为false。当为false时,返回最后一层最后一个步长的hidden state;当为true时,返回最后一层的所有hidden state。
return_state:默认false.当为true时,返回最后一层的最后一个步长的输出hidden state和输入cell state。
二、实例验证
下图的输入是一个步长为3,维度为1的数组。
一共有2层神经网络(其中第一层必须加上“return_sequences=True”,这样才能转化成步长为3的输入变量)
(1)return_sequences=True
from keras.models import Model
from keras.layers import Input
from keras.layers import LSTM
from numpy import array
from keras.models import Sequential
data = array([0.1,0.2,0.3]).reshape((1,3,1))
inputs1 = Input(shape=(3,1))
lstm1,state_h,state_c = LSTM(2,return_sequences=True,return_state=True)(inputs1)
lstm2 = LSTM(2,return_sequences=True)(lstm1)
model = Model(input = inputs1,outputs = [lstm2])
print(model.predict(data))
输出结果为:(最后一层