数学
距离高考还有32天
高考数学
高考是考生选择大学和进入大学的资格标准,也是国家教育考试之一。而数学是高考中非常重要的一个科目,也是所有考生都必须要考的一个科目,数学还是所有的科目中最难的一个科目。因此就有了“得数学得天下”的说法。其实只要方法掌握对了,那么数学也可以很简单。
下面小编就来给大家说说高考数学的快速记忆口诀!
我是数学口诀
我的名字叫做“1”,自然数中是小弟。
正弦、余弦我最大, 真分数比我低,禀性忠厚又老实,“乘以”“除以”没关系,两数之积若是我,互为倒数无置疑。
同学莫把我藐视,我的作用妙无比。
说明:在恒等变形时,巧用1(如将1 与tg45°,tgα·ctgα,sin2α+cos2α,lg10,a0(a≠0),x/x,x·1/x 互化)
式子无意义三诀
分母不得为零,偶次方根为负,零负没有对数。
注:开偶次方时,根号中式子的值为负数时,没有意义。
多个有理数相乘符号法则歌
多个有理数相乘,负号当家起作用。
奇负偶正规律定,一数为0必得0。
说明:
几个不等于0的有理数相乘,积的符号由负因数的个数决定(“负号当家起作用”)。
当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
几个有理数相乘,其中若有一个因数为0,则积为0。
常用速算口诀(三则)
(一)十几与十几相乘:
十几乘十几,方法最容易,保留十位加个位,添零再加个位积。
证明:设m、n为1至9的任意整数,则
(10+m)(10+n)
=100+10m+10n+mn
=10[10+(m+n)]+mn。
(二)十位数字相同、个位数字互补(和为10)的两位数相乘:
例:17×l6
∵10+(7+6)=23(第三句)
∴230+7×6=230+42=272(第四句)
∴17×16=272。
十位同,个位补,两数相乘要记住:十位加一乘十位,个位之积紧相随。
证明:设m、n为1到9的任意整数,则
(10m+n)[10m+(10-n)]
=100m(m+1)+n(10-n)。
例:34×36
∵(3+1)×3=4×3=12(第三句)
个位之积4×6=24
∴34×36=1224。(第四句)
注意:两个数之积小于10时,十位数字应写零。
(三)用11去乘其它任意两位数:
两位数乘十一,此数两边去,中间留个空,用和补进去。
证明:设m、n为1至9的任意整数,则
(10m+n)×(10+1)
=100m+10(m+n)+n。
例:36×ll
∵306+90=396
∴36×11=396。
注意:当两位数字之和大于10时,要进到百位上,那么百位数数字就成为m+1,
如:
84×11
∵804+12×10
=804+120
=924
∴84×11=924。
合并同类项法则
合并同类项,法则不能忘。
只求系数代数和,字母、指数不变样。
分解因式歌
首先提取公因式,然后考虑用公式。
十字相乘试一试,分组分得要合适。
四种方法反复试,分解完成连乘式。
算术根运算法则歌
绝对值,算术根,永不为负记在心。
两个好像亲姐妹,形影相随不离分。两人一旦分了手,谬误可能就降临。
说明:绝对值和算术根都是非负数。
对于算术根的运算,一般是先化成绝对值的形式,再根据绝对值的概念,化去绝对值符号,这样可以减少差错。
二元二次方程组一般解法
未知项,成比例,消元降次都可以。
方程一边等于零,因式分解再降次。
方程缺了一次项,常数消去再求解。
一元一次不等式的解法
如有分母去分母,如有括号去括号。
常数都往右边挪,未知都往左边靠。
如有同类须合并,化为标准再求解。
注:未知指未知数。
一元一次不等式组的四种情况
大大取较大,小小取较小,小大,大小中间找。
小小,大大解不了。
不等式解集的几种情况
两大从大,两小从小,一大一小就相连,不能相连是空集。