mysql bind variable_sqltuning bind variable

1)sql bind variable

1@@@@analyzed

@@@run the part 2 shell, and analyzed the result as below.

<1>

SQL> SELECT /* mysql */ * FROM customers WHERE cust_id =10;

Statistics

----------------------------------------------------------

1226  recursive calls

0  db block gets

294  consistent gets

0  physical reads

0  redo size

2159  bytes sent via SQL*Net to client

458  bytes received via SQL*Net from client

1  SQL*Net roundtrips to/from client

26  sorts (memory)

0  sorts (disk)

1  rows processed

SQL> SELECT /* mysql */ * FROM customers WHERE cust_id =20;

Statistics

----------------------------------------------------------

1  recursive calls

0  db block gets

3  consistent gets

0  physical reads

0  redo size

2150  bytes sent via SQL*Net to client

458  bytes received via SQL*Net from client

1  SQL*Net roundtrips to/from client

0  sorts (memory)

0  sorts (disk)

1  rows processed

@@@

@@@comment:

@@@26 sorts (memory) and 0  sorts (memory)  ==> cache work

@@@1226  recursive calls and 1  recursive calls  ==> soft parse work

<2>

SQL> exec :cid := 10

SQL> SELECT    /* mynewsql */ * FROM customers WHERE cust_id =:cid;

Statistics

----------------------------------------------------------

1  recursive calls

0  db block gets

3  consistent gets

0  physical reads

0  redo size

2159  bytes sent via SQL*Net to client

458  bytes received via SQL*Net from client

1  SQL*Net roundtrips to/from client

0  sorts (memory)

0  sorts (disk)

1  rows processed

SQL> exec :cid := 20

SQL> SELECT    /* mynewsql */ * FROM customers WHERE cust_id =:cid;

Statistics

----------------------------------------------------------

0  recursive calls

0  db block gets

3  consistent gets

0  physical reads

0  redo size

2150  bytes sent via SQL*Net to client

458  bytes received via SQL*Net from client

1  SQL*Net roundtrips to/from client

0  sorts (memory)

0  sorts (disk)

1  rows processed

@@@

@@@comment:

@@@due to the shared pool, the part 2 of lab less then the part 1 of lab.

@@@we focus on the second time.

@@@1 recursive calls was saved. when the number is huge, that would be great.

<3>

SQL>

SELECT sql_text, version_count, loads,

invalidations, parse_calls, sorts

FROM  v$sqlarea

WHERE parsing_user_id > 0

AND  command_type    = 3

AND  lower(sql_text) LIKE '%my%'

ORDER BY sql_text

/

SQL>

SQL_TEXT               VERSION_COUNT      LOADS INVALIDATIONS PARSE_CALLS      SORTS

------------------------------ ------------- ---------- ------------- ----------- ----------

SELECT    /* mynewsql */ * FROM           2         21        20        3       0

customers WHERE cust_id =:cid

SELECT /* mysql */ * FROM cust           1          1         0        1       0

omers WHERE cust_id =10

SELECT /* mysql */ * FROM cust           1          1         0        1       0

omers WHERE cust_id =20

SELECT /* mysql */ * FROM cust           1          1         0        1       0

omers WHERE cust_id =30

SELECT DISTINCT SID FROM V$MYS           1          1         0        1       0

TAT

SELECT sql_text, version_count           1          1         0        1       1

, loads,    invalidations,

parse_calls, sorts FROM  v$sq

larea WHERE parsing_user_id >

0  AND    command_type    = 3  A

ND  lower(sql_text) LIKE '%my%

'  ORDER BY sql_text

@@@

@@@comment:

@@@the LOADS and INVALIDATIONS is accumulated in v$sqlarea;

2@@@@the lab shell.

@@@run the shell by oracle user.

@@@ensure sechma of sh was installed.

@@@ensure firefox was installed.

####begin_2-1#####################################################################

#!/bin/sh

#use comment /* my... */ to trace the sql in the v$sqlarea

#run as oracle user.

flash_shared_pool(){

sqlplus / as sysdba<

alter system flush shared_pool;

EOF

}

sql_bind(){

sqlplus / as sysdba<

alter system flush shared_pool;

EOF

sqlplus sh/sh<

set linesize 200

set autot traceonly

set serverout on

set feedback off

exec dbms_output.put_line(chr(13));

exec dbms_output.put_line(chr(13));

exec dbms_output.put_line('SELECT /* mysql */ * FROM customers WHERE cust_id =10;');

SELECT /* mysql */ * FROM customers WHERE cust_id =10;

exec dbms_output.put_line(chr(13));

exec dbms_output.put_line(chr(13));

exec dbms_output.put_line('SELECT /* mysql */ * FROM customers WHERE cust_id =20;');

SELECT /* mysql */ * FROM customers WHERE cust_id =20;

exec dbms_output.put_line(chr(13));

exec dbms_output.put_line(chr(13));

exec dbms_output.put_line('SELECT /* mysql */ * FROM customers WHERE cust_id =30;');

SELECT /* mysql */ * FROM customers WHERE cust_id =30;

variable cid number

exec dbms_output.put_line(chr(13));

exec dbms_output.put_line(chr(13));

exec dbms_output.put_line('SELECT  /* mynewsql */ * FROM customers WHERE cust_id =:cid;');

exec :cid := 10

SELECT  /* mynewsql */ * FROM customers WHERE cust_id =:cid;

exec dbms_output.put_line(chr(13));

exec dbms_output.put_line(chr(13));

exec dbms_output.put_line('SELECT  /* mynewsql */ * FROM customers WHERE cust_id =:cid;');

exec :cid := 20

SELECT  /* mynewsql */ * FROM customers WHERE cust_id =:cid;

exec dbms_output.put_line(chr(13));

exec dbms_output.put_line(chr(13));

exec dbms_output.put_line('SELECT  /* mynewsql */ * FROM customers WHERE cust_id =:cid;');

exec :cid := 50

SELECT  /* mynewsql */ * FROM customers WHERE cust_id =:cid;

set autot off

set pagesize 30

set linesize 200

col SQL_TEXT format a30

SELECT sql_text, version_count, loads,

invalidations, parse_calls, sorts

FROM  v\$sqlarea

WHERE parsing_user_id > 0

AND  command_type    = 3

AND  lower(sql_text) LIKE '%my%'

ORDER BY sql_text;

clear col

EOF

}

#may be check the execute plan without shared pool

#sleep 7 && flash_shared_pool &

sql_bind > /tmp/sub_bind.tmp

firefox /tmp/sub_bind.tmp

######end_2-1#####################################################################

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 支持向量机非线性回归通用MATLAB程序解析 #### 一、概述 本文将详细介绍一个基于MATLAB的支持向量机(SVM)非线性回归的通用程序。该程序采用支持向量机方法来实现数据的非线性回归,并通过不同的核函数设置来适应不同类型的数据分布。此外,该程序还提供了数据预处理的方法,使得用户能够更加方便地应用此程序解决实际问题。 #### 二、核心功能与原理 ##### 1. 支持向量机(SVM) 支持向量机是一种监督学习模型,主要用于分类和回归分析。对于非线性回归任务,SVM通过引入核技巧(kernel trick)将原始低维空间中的非线性问题转换为高维空间中的线性问题,从而实现有效的非线性建模。 ##### 2. 核函数 核函数的选择直接影响到模型的性能。本程序内置了三种常用的核函数: - **线性核函数**:`K(x, y) = x'y` - **多项式核函数**:`K(x, y) = (x'y + 1)^d` - **径向基函数(RBF)**:`K(x, y) = exp(-γ|x - y|^2)` 其中RBF核函数被广泛应用于非线性问题中,因为它可以处理非常复杂的非线性关系。本程序默认使用的是RBF核函数,参数`D`用于控制高斯核函数的宽度。 ##### 3. 数据预处理 虽然程序本身没有直接涉及数据预处理的过程,但在实际应用中,对数据进行适当的预处理是非常重要的。常见的预处理步骤包括归一化、缺失值处理等。 ##### 4. 模型参数 - **Epsilon**: ε-insensitive loss function的ε值,控制回归带宽。 - **C**: 松弛变量的惩罚系数,控制模型复杂度与过拟合的风险之间的平衡。 #### 三、程序实现细节 ##### 1. 函数输入与输出 - **输入**: - `X`: 输入特征矩阵,维度为(n, l),其中n是特征数量,l是样本数量。 - `Y`: 目标值向量,长度为l。 - `Epsilon`: 回归带宽。 - `C`: 松弛变量的惩罚系数。 - `D`: RBF核函数的参数。 - **输出**: - `Alpha1`: 正的拉格朗日乘子向量。 - `Alpha2`: 负的拉格朗日乘子向量。 - `Alpha`: 拉格朗日乘子向量。 - `Flag`: 标记向量,表示每个样本的类型。 - `B`: 偏置项。 ##### 2. 核心代码解析 程序首先计算所有样本间的核矩阵`K`,然后构建二次规划问题并求解得到拉格朗日乘子向量。根据拉格朗日乘子的值确定支持向量,并计算偏置项`B`。 - **核矩阵计算**:采用RBF核函数,通过`exp(-(sum((xi-xj).^2)/D))`计算任意两个样本之间的相似度。 - **二次规划**:构建目标函数和约束条件,使用`quadprog`函数求解最小化问题。 - **支持向量识别**:根据拉格朗日乘子的大小判断每个样本是否为支持向量,并据此计算偏置项`B`。 #### 四、程序扩展与优化 - **多核函数支持**:可以通过增加更多的核函数选项,提高程序的灵活性。 - **自动调参**:实现参数自动选择的功能,例如通过交叉验证选择最优的`Epsilon`和`C`值。 - **并行计算**:利用MATLAB的并行计算工具箱加速计算过程,特别是当样本量很大时。 #### 五、应用场景 该程序适用于需要进行非线性回归预测的场景,如经济预测、天气预报等领域。通过调整核函数和参数,可以有效应对各种类型的非线性问题。 ### 总结 本程序提供了一个支持向量机非线性回归的完整实现框架,通过灵活的核函数设置和参数调整,能够有效地处理非线性问题。对于需要进行回归预测的应用场景,这是一个非常实用且强大的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值