这大约是关于振动问题的系列文章的最后一篇了,我打算来解决如下的问题:
如果一个简谐振子同时受到阻力和一个周期性的驱动力的作用,那么它会做怎样的运动?更进一步的问,它振动的振幅和相位与施加的驱动力会有怎样的关系?
我们就此问题试着来推导一波。
开门第一件事,先建立运动方程。
假定振子一开始静置于平衡位置,从
时刻起施加的驱动力为
,运动过程中受到的阻力正比于速度大小
,由此可以写下运动方程:
式中
代表简谐振子自身的回复力,其大小正比于位移
,方向与
相反,故带有负号;阻力与运动速度反向,故也带负号。如果我们引入新的参数:
,及
,则运动方程可以被改写为:
这是一个二阶常系数的非齐次微分方程。在前几篇关于简谐振子的文章中,我们已经对这类方程的求解方法做过基本介绍。我们可以分别找出齐次方程的通解,并于非齐次方程的特解叠加,最后根据初始条件确定可调的系数,得到问题的唯一解。
注意到之前解振动方程,我们可以让位移函数
取复数值,然后通过施加具有物理意义的限定条件,最终得到实数的解。拓展到复数领域后,指数函数有诸多友好的性质可以帮助我们简化计算。为了对付现在的这个问题,我们也采取进入到复数域中去求解的策略。不妨假定我们要求的位移函数
是某个复数函数
的实部,然后注意到
就是
的实部。所以我们可以试着来求解方程:
解出
,取其实部,就可以得到真正的位移函数
了。为了方便,下面求解(*)式的过程中,对
和
我们不作符号上的区分,只是在最终结果中才特别标注。但大家要记得最后求的(*)式的解,必须要取实部才有物理意义。