合振动的初相位推导_合振动的初相位确定方法.doc

本文详细探讨了同方向同频率简谐振动合成中初相位的确定方法,提供了通过数值比较和旋转矢量图选择合振动最佳初相位的实用策略,适用于土木工程及地震防震设计。通过实例展示了如何应用这些方法并总结了结论,对地震多发地区的工程技术人员极具指导意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

合振动的初相位确定方法.doc

合振动的初相位确定方法梁沙莎(延安大学西安创新学院建筑工程系陕西长安区710100)引言振动是自然界中最常见的运动形式之一,同时也是近代物理学和科学技术众多领域中的重要课题。随着生产技术的发展,动力结构又向大型化,复杂化,轻量化和高速化发展的趋势,由此而带来的工程振动问题更为突出。振动在当今不仅作为基础科学的一个重要分支,而且正走向工程科学发展的道路,它在地震学、建筑力学、机械、航空、航天、等工业技术部门中占有越来越重要的地位。因此,掌握同方向同频率简谐振动合成中初相位的确定方法,从而为研究现代科学技术振动和动态问题是十分重要的,更为初学者探讨振动问题打下良好的基础。一、简谐振动基本概念物体运动时,如果离开平衡位置的位移(或角位移)按余弦函数(或按正弦函数)的规律随时间变化,这种运动称为简谐振动,简称谐振动1。简谐振动是一种最简单和最基本的振动,一切复杂的振动都可以看作是由若干个简谐振动合成的结果。而振动的合成问题实际上是个运动合成问题,合振动的求解方法是用矢量求和的方法。同方向同频率的的合成是简谐振动合成最简单的形式,对于这种合成的求解,可以用代数法,也可以用几何法。各种相关资料中都只有这个合成的结果,却没有对合成振动初相位两个值的比较,和用什么样的方法进一步的探讨挑选其中的一个最佳值。下面就此问题进行深究。二、简谐振动合成分析由相关计算可知,这个合成的运动是简谐振动。若两个分振动的表达式是COS222111WTAX则合振动的表达式是ST合振动的振幅是①COS2212121AA说明合振动的振幅与两个分振动的振幅,和初相位都有关A21,合振动的初相位②2211COSCOSININAATG或③SIN或④C说明合振动的初相们与分振动的振幅,和初相位都有关。1A221,由此可见,这是确实合振动的振幅A和初相位的确定与简谐振动确定振幅和初相的不同之处是这里的振幅和初相位不是由初始条件确定的,完全由两个分振动的振幅和初相位决定。三、简谐振动合成初相位的确定方法各种科技资料中,都只给出了初相位的计算公式,但这是一个三角函数表达式。对于确定的,,,就是在一个同期中,也应该有1A221,两个值,这是数字计算所给出的结果,毋庸质疑。问题是怎样从这两个值中确定这个合振动的初相位怎样进行挑选一般的科技资料中都没有给出。对于这类问题,初次接触是不易解决的。我们学习土木工程专业的学生研究振动很有必要。因为我国是一个多地震的区域,各种建筑物的设计中必须考虑防震的因素,因此,必须深刻理解、牢固掌握、灵活运用有关地震方面的振动知识,确定合振的初相位。对于值的确定,可以按以下几种情况,通过不同途径计算和挑选。(一)当时21方法I通过计算、比较、确定值由②、③、④中的任意两式分别计算可各得两个值,两组值的重叠部分即为所挑选出的值,所需要的那个值。方法II通过计算,结合旋转矢量图确定。由旋转矢量法可知振幅矢量都以角速度W沿逆时针方向转A,1动,因此,在旋转过程中,平行四边形的形状不会发生变化,可用T0时刻讨论的取值。由图可知,与轴的夹角就是,且,因此,由AX21②、③、④各式中的任意一个计算出后,就取介于和之间的那个为值。(二)当时21说明两个简谐振动是反相位的,从旋转矢量图上可以看出,合振幅与和共线,由①式知A12在此情况,可不必用②、③、④式进行计算,只需用与或的指向关系,就A12可用或表示,从而确定了12O21A2A1AΩ当时,与同指向,则,21A1A1当时,与同指向,则,22(三)当时2说明两个简谐振动是同相位的,从旋转矢量图上可以看出,振幅矢量与和同指向,则有A12在此情况下,也不必用②、③、④式进行计算,只用与和的A12指向关系就可确定。四、例证例两个同方向同频率简谐振动的表达式为6510COS3S421TXT求合振动的表达式。解用的方法I21233241COSS4COS65COS342XXA可解得6165INININ可解得取它们的重叠部分,则有还可计算65SIN36COS4SISINTG可解得或7同样,由与的重叠部分,则有TG6同样,由与的重叠部分,则有SIN则合振动的表达式COSTAX610方法II由于,可用情况(二)进行计算。6521由于,说明旋转矢量与同指向,则21AA16五、结论(很重要,可以参照摘要加以扩充)通过上文对简谐振动合成分析,探讨了同方向同频率简谐振动合成中初相位的确定方法,提出了一种初相位的简便确定方法。(一)当时,两组值的重叠部分即为所挑选出的值,所需要21的那个值。(即就取介于和之间的那个为值。)12(二)当时,用与或的指向关系,就可用21A12或表示,从而确定了12当时,与同指向,则,A11当时,与同指向,则,212A2(三)当时,用与和的指向关系就可确定。12A通过具体例子,证明这种方法是正确可行的,结论是正确的。对于我国这样一个地震多发国家的建筑物设计人员,有着不可忽视的作用;也为探讨振动问题的科技人员提供理论基础。参考文献普通物理学程守洙编(高等教育出版社)1998年版1大学物理朱峰主编(清华大学出版社)2004年版高等数学同济大学应用数学系主编(高等教育出版社)2002年5版

参考资源链接:[离散傅里叶变换与希尔伯特变换的关系](https://wenku.csdn.net/doc/39rkys4ewp?utm_source=wenku_answer2doc_content) 要分析信号的幅度和相位,首先需要理解离散傅里叶变换(DFT)和希尔伯特变换(HT)之间的关系。DFT可以将时域信号转换到频域,通过计算DFT,我们能够得到信号的幅度谱和相位谱。希尔伯特变换则是一个数学工具,它能够从信号的实部推导出虚部,或者从虚部推导出实部,这一性质在处理因果序列时尤其有用。 在数字信号处理中,信号通常被表示为复数形式,其中幅度和相位是复数信号的两个关键特性。对于一个时域信号x[n],其DFT定义为: X[k] = Σ (x[n] * e^(-j*2πkn/N)) 其中,j是虚数单位,N是序列的长度,k是频率索引。通过DFT,我们可以得到信号在不同频率下的幅度和相位信息。 要计算信号的幅度和相位,我们需要分别对复数信号的实部和虚部进行操作。幅度谱由复数信号的模决定,计算公式为: |X[k]| = sqrt(real(X[k])^2 + imag(X[k])^2) 而相位谱则由实部和虚部的关系确定,计算公式为: θ[k] = arctan(imag(X[k])/real(X[k])) 然而,对于实际的因果序列,直接使用上述公式计算可能会遇到问题。此时,希尔伯特变换提供了另一种方法推导信号的幅度和相位。希尔伯特变换可以将一个信号的实部转换成一个解析信号,该解析信号的实部就是原始信号,而虚部则是原始信号的希尔伯特变换。通过构建解析信号,我们可以更方便地计算信号的包络(即幅度)和瞬时相位。 具体来说,希尔伯特变换定义为: HT{x[n]} = x[n] * (1/(πn)) 这是一个卷积操作,其中x[n]是原始信号,HT{x[n]}是信号的希尔伯特变换。应用希尔伯特变换后,可以通过以下公式得到解析信号: z[n] = x[n] + j*HT{x[n]} 解析信号的幅度和相位可以通过求解z[n]来获得,从而得到信号的包络和瞬时相位信息。 综上所述,通过结DFT和希尔伯特变换,我们可以深入分析信号的幅度和相位。对于希望进一步掌握这些概念和方法的读者,推荐阅读《离散傅里叶变换与希尔伯特变换的关系》。该资料不仅详细解释了这两种变换之间的关系,还提供了具体的应用实例和深入的理论分析,对解决数字信号处理中的复杂问题有着不可替代的作用。 参考资源链接:[离散傅里叶变换与希尔伯特变换的关系](https://wenku.csdn.net/doc/39rkys4ewp?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值