python 波动率锥_50ETF波动率的统计属性及其对波动率交易策略的启示

资产价格收益率的波动和跳跃是金融领域研究的重点和难点问题之一。许多研究者都发现资产收益存在明的扩散、跳跃和随机波动现象,即资产价格由连续的扩散过程、无限的跳跃部分组成。同时,资产收益的波动率也存在三个显著的特点:

①资产收益的波动率是时变而且持续的;

②资产收益在某些时间段内会产生大规模、大幅度的聚簇的变化,表现为资产收益的跳跃聚集和自兴奋行为;

③资产收益负向的冲击会对未来波动产生相对正向冲击更大的作用,即波动率的非对称反馈作用或杠杆效应。

研究者对50ETF波动率的研究,也发现了类似的性质。了解这些性质有助于我们设计波动率交易策略。

首先,50ETF的波动率存在聚集效应:较高的历史波动率对应的未来波动率平均意义上看也较高,有正相关性。

下表为对2006年2月21日~2018年5月8日的50ETF历史波动率的统计。

其次,波动率存在均值回复特性:整体上看,相同时间长度的历史波动率很低时,未来波动率均值高于历史波动率;历史波动率很高时,未来波动率均值低于历史波动率;历史波动率大致在20~40%范围的,未来波动率均值与历史波动率接近。

下图为对2006年2月21日~2018年5月8日的50ETF20日历史波动率的统计。将20日历史波动率差距在5%以内的样本点聚在一起,计算其均值及上下浮动一倍标准差的范围。从中可以看出均值回复的特征:历史波动率在 25~45%的范围中时,未来波动率均值与历史波动率高度 一致;历史波动率较低时,未来波动率均值高于历史波动率;历史波动率较高时,未来波动率均值低于历史波动率。

第三,20日历史波动率取不同值时,对应的未来不同期限波动率均值特征:20日历史波动率低于25%时,未来波动率均值高于20日历史波动率,且越长期限的未来波动率均值越高;20日历史波动率在30%以上但未超过40%时,未来波动率均值随历史波动率增加而增加,但低于历史波动率;20日历史波动率超过40%以后,未来各期限波动率均值均维持在40%附近不再增加。

下表中是20日历史波动率取不同值时,对应的未来20、41、61、122个交易日的波动率的分布情况。从中可以看到,以20日历史波动率作为条件变量,各周期的未来波动率变化具备均值回复的共性特征,但是边界位置略有差别。

最后,未来波动率分布标准差与均值的比值:高历史波动率环境下的比值低于低历史波动率环境下的比值。与第3条性质结合可以得出,低波动环境下的波动率上升,不确定性高于高波动环境下的波动率下降;即低波动环境维持的可能性高于高波动环境。

隐含波动率的期限结构与上文提到的未来波动率期限结构是相像的:低波动率环境下隐含波动率高于历史波动率,高波动率环境下隐含波动率低于历史波动率,短期限上的隐含波动率变化范围高于长期限。历史波动率较低时,隐含波动率平均意义上低估了未来的市场波动水平,这一特点在到期时间较远的合约上体现的更为明显;历史波动率较高时,隐含波动率平均意义上高估了未来的市场波动水平,到期时间较近的合约上体现的更为明显。

利用这些性质,投资者可以设计出丰富的波动率交易策略。例如,投资者可以在给定的实际波动率环境下,对未来不同期限的合约隐含波动率理论值进行估计,再将估计值与实际值进行对比,买入低估月份的平值合约、卖出高估月份的平值合约,通过这种方式构建基于隐含波动率实际值与理论值差异的投资组合。

其他资产的波动率是否也有类似规律,投资者可以尝试用真格量化等工具自行研究。

— — — — — — E N D — — — — — —

真格量化可访问:

真格量化微信公众号,长按关注:

遇到了技术问题?欢迎加入真格量化Python技术交流QQ群 726895887

往期文章:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值