jaccard相似度_如何计算两个字符串之间的文本相似度?

本文介绍了计算文本相似度的几种方法,包括Jaccard相似度、Sorensen Dice相似度系数、Levenshtein距离和汉明距离,并提供了相应的Java代码实现。这些算法常用于文本纠错、去重等场景。
摘要由CSDN通过智能技术生成

推荐阅读:

  • 面试BAT 却被小小字符串秒杀?这13道题帮你一举击败字符串算法题
  • 字节跳动秋招面经:后端开发工程师,已拿意向书

前言

平时的编码中,我们经常需要判断两个文本的相似性,不管是用来做文本纠错或者去重等等,那么我们应该以什么维度来判断相似性呢?这些算法又怎么实现呢?这篇文章对常见的计算方式做一个记录。

5e51e16f615306d2403c3fce59e74165.png

Jaccard 相似度

首先是 Jaccard 相似度系数,下面是它在维基百科上的一个定义及计算公式。

The Jaccard index, also known as Intersection over Union and the Jaccard similarity coefficient (originally given the French name coefficient de communauté by Paul Jaccard), is a statistic used for gauging the similarity and diversity of sample sets. The Jaccard coefficient measures similarity between finite sample sets, and

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值