python实现——Jaccard相似度(jaccard_coefficient)

 Jaccard相似度的python实现;

#import numpy as np
#from scipy.spatial.distance import pdist#直接调包可以计算JC值 :需要两个句子长度一样;所以暂时不用
import jieba

def Jaccrad(model, reference):#terms_reference为源句子,terms_model为候选句子
    terms_reference= jieba.cut(reference)#默认精准模式
    terms_model= jieba.cut(model)
    grams_reference = set(terms_reference)#去重;如果不需要就改为list
    grams_model = set(terms_model)
    temp=0
    for i in grams_reference:
        if i in grams_model:
            temp=temp+1
    fenmu=len(grams_model)+len(grams_reference)-temp #并集
    jaccard_coefficient=float(temp/fenmu)#交集
    return jaccard_coefficient

a="香农在信息论中提出的信息熵定义为自信息的期望"
b="信息熵作为自信息的期望"
jaccard_coefficient=Jaccrad(a,b)
print(jaccard_coefficient)

 

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值