分段概率密度矩估计_考研数学:高数、线代、概率3科目知识框架梳理

本文围绕考研数学中的高等数学、线性代数、概率论与数理统计三大模块,详细梳理了考试重点,包括极限、微积分、定积分的应用、多元函数、线性方程组、特征值与特征向量、随机变量及其分布等,并强调了分段概率密度矩估计的重要性。
摘要由CSDN通过智能技术生成

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼

首先要确保常考题型,常考知识点非常熟练。下面从高等数学、线性代数、概率统计三个模块进行阐述。

高等数学部分

1.函数的极 限;数列的极 限;无穷小及阶的问题;

2.微分中值定理的证明;不等式的证明;方程根的存在性及个数问题;

3.定积分在几何上的应用(平面图形的面积、旋转体的体积);

4.多元函数微分学求极值最值及偏导数的计算;

5.数二数三的二重积分;数一的曲线曲面积分;

6.微分方程的应用(与切线法线、曲率拐点结合,与平面图形的面积、旋转体的体积结合,与多元函数求偏导结合)。

7.无穷级数求收敛域、和函数;证明级数收敛;幂级数的展开式(数一、数三)。

8.三重积分;曲线积分;曲面积分(数一)。

线性代数部分

1.向量线性无关的证明;向量组的线性表出;极大无关组及秩;

2.齐次、非齐次方程组的求解问题(公共解、同解);

3.特征值、特征向量的计算,实对称矩阵、相似对角化(与二次型结合);

概率论与数理统计部分

1.二维离散;二维连续型随机变量及函数分布(包括求数字特征);

2.矩估计;最大似然估计(以及求数字特征);

其次,有些知识点也非常重要,相对以上知识点的考察频率,低一些,但是也要引起注意。这样的考点有:

高等数学部分

1.分段函数求导、复合函数求导、隐函数求导、反函数求导、参数方程确定函数求导;高阶导数;

2.一元函数的极值、最值,极坐标与直角坐标下的切线法线问题;

3.定积分、概念、性质及几何意义,定积分计算;

4.多元函数微分学中连续性、可偏导、可微性、偏导数连续性的关系;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值