python计算球体体积_鬼斧神工:求n维球的体积

今天早上同学问了我有关伽马函数和$n$维空间的球体积之间的关系,我记得我以前想要研究,但是并没有落实。既然她提问了,那么就完成这未完成的计划吧。

标准思路#

简单来说,$n$维球体积就是如下$n$重积分

$$V_n(r)=\int_{x_1^2+x_2^2+\dots+x_n^2\leq r^2}dx_1 dx_2\dots dx_n$$

用更加几何的思路,我们通过一组平行面($n-1$维的平行面)分割,使得$n$维球分解为一系列近似小柱体,因此,可以得到递推公式

$$V_n (r)=\int_{-r}^r V_{n-1} \left(\sqrt{r^2-t^2}\right)dt$$

设$t=r\sin\theta_1$,就有

$$V_n (r)=r\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_{n-1} \left(r\cos\theta_1\right)\cos\theta_1 d\theta_1$$

迭代一次就有

$$V_n (r)=r^2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_{n-2} \left(r\cos\theta_1\cos\theta_2\right)\cos\theta_1\cos^2\theta_2 d\theta_1 d\theta_2$$

迭代$n-1$次

$$\begin{aligned}V_n (r)=&r^{n-1}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\dots\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_1\left(r\cos\theta_1\cos\theta_2\dots \cos\theta_{n-1}\right)\times\\

&\cos\theta_1\cos^2\theta_2\dots\cos^{n-1}\theta_{n-1} d\theta_1 d\theta_2\dots d\theta_{n-1}\end{aligned}$$

其中$V_1 (r)=2r$,即两倍半径长的线段。从而

$$V_n (r)=2r^{n}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\dots\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2\theta_1\cos^3\theta_2\dots\cos^{n}\theta_{n-1} d\theta_1 d\theta_2\dots d\theta_{n-1}$$

完成这个积分,最终就得到$n$维球体积的公式,这个积分自然是可以求出来的(只是$n-1$个一维积分的乘积)。但是这样的步骤太不容易了,为了将其跟伽马函数联系起来,还要做很多工作。总的来说,这是一个不容易记忆、也不怎么漂亮的标准方法。

绝妙思路#

有一个利用高斯积分的绝妙技巧,能够帮助我们直接将球体积跟伽马函数联系起来,整个过程堪称鬼斧神工,而且给人“仅此一家,别无分号”的感觉。据说这个技巧为物理系学生所知晓,我是从百读文库看到的,原始来源则是《热力学与统计力学》顾莱纳(德),例5.2 理想气体的熵的统计计算。

这一绝妙的思路,始于我们用两种不同的思路计算高斯积分

$$G(n)=\int_{-\infty}^{+\infty}\dots\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} \exp\left(-x_1^2-x_2^2-\dots-x_n^2\right)dx_1 dx_2 \dots dx_n\tag{1}$$

一方面,将$(1)$当作$n$次累次积分,因为我们已经算得(可以参考这里)

$$\int_{-\infty}^{+\infty}\exp(-t^2)dt=\sqrt{\pi}$$

而$(1)$只不过是这样的$n$个积分的乘积,因此

$$G(n)=\pi^{n/2}\tag{2}$$

另一方面,将$(1)$当作$n$重积分,由于积分变量只是跟径向长度$r=\sqrt{x_1^2+x_2^2+\dots+x_n^2}$有关的变量,因此很容易联想到球坐标,在$n$维空间中,可以称为“超球坐标”,不需要将超球坐标完整写出来,只需要注意到,球内的积分,可以化为先对“球壳”进行积分,然后再对球半径进行积分。

$$G(n)=\int_{0}^{+\infty}dr\int_{S_n(r)}\exp\left(-r^2\right)dS_n\tag{3}$$

这里的$S_n(r)$是半径为$r$的$n$维球体表面(以及表面积,在不至于混淆的情况下,这里不作区分)。但是注意到,被积函数只跟$r$有关,因此对球表面进行积分,等价于原函数乘以球的表面积而已,因此$(2)$式的结果为

$$G(n)=\int_{0}^{+\infty}dr\exp\left(-r^2\right)S_n(r)\tag{4}$$

虽然我们不知道$n$维球的体积和表面积公式,但是我们可以肯定,$n$维球的体积一定正比于$r^n$,即有

$$V_n (r)=V_n(1)r^n$$

球的表面积,就是球体积的一阶导数(考虑球壳分割),那么

$$S_n (r)=n V_n(1)r^{n-1}$$

代入$(4)$,得到

$$\begin{aligned}G(n)=&n V_n(1)\int_{0}^{+\infty}r^{n-1}\exp\left(-r^2\right)dr\\

=&\frac{1}{2}n V_n(1)\int_{0}^{+\infty}(r^2)^{n/2-1}\exp\left(-r^2\right)d(r^2)\\

=&\frac{1}{2}n V_n(1)\int_{0}^{+\infty}z^{n/2-1}\exp\left(-z\right)dz\quad\left(z=r^2\right)\\

=&\frac{1}{2}n V_n(1)\Gamma\left(\frac{n}{2}\right)\end{aligned}\tag{5}$$

结合$(2)$得

$$\pi^{n/2}=G(n)=\frac{1}{2}n V_n(1)\Gamma\left(\frac{n}{2}\right)$$

从而

$$V_n(1)=\frac{\pi^{n/2}}{\frac{1}{2}n\Gamma\left(\frac{n}{2}\right)}=\frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)}$$

最后

$$V_n(r)=\frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)}r^n$$

就这样得到了$n$维球体积公式!!对$r$求导得到$n$维球表面积公式

$$S_n(r)=\frac{2\pi^{n/2}}{\Gamma\left(\frac{n}{2}\right)}r^{n-1}$$

结合前后两个方法,就得到

$$\frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)}=2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\dots\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2\theta_1\cos^3\theta_2\dots\cos^{n}\theta_{n-1} d\theta_1 d\theta_2\dots d\theta_{n-1}$$

简单评述#

该技巧相当漂亮、简洁,其中高斯积分、球坐标变换这些都是物理系学生很熟悉的,只需简单峰回路转,就把结果给算了出来,这俨然就是只有物理系学生才能想出来的绝妙思路!

更妙的是,我们发现这一思路如此奇妙,以至于我们想用它来做更多的事情,但是稍微研究之后就会得到结论:不能再做什么了!也就是说,整个过程似乎就只为计算$n$维球体积而订制的!真的是“只此一家,别无分号”!妙哉~~

更详细的转载事宜请参考:《科学空间FAQ》

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!

打赏

wx.png

微信打赏

zfb.png

支付宝打赏

因为网站后台对打赏并无记录,因此欢迎在打赏时候备注留言。你还可以点击这里或在下方评论区留言来告知你的建议或需求。

如果您需要引用本文,请参考:

苏剑林. (2014, Dec 23). 《鬼斧神工:求n维球的体积 》[Blog post]. Retrieved from https://www.spaces.ac.cn/archives/3154

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值