问题
我关心的是:我将一个相对较大的数据集存储在古典的python列表中,为了处理数据,我必须遍历列表多次,对元素执行一些操作,并经常将一个项目从列表中弹出。
看来,从Python列表中删除一个项目会花费O(N),因为Python必须将元素上方的所有项目复制在一个位置。此外,由于要删除的项目数量与列表中的元素的数量成正比,这导致了O(N ^ 2)算法。
我希望找到一个具有成本效益(时间和记忆性)的解决方案。我已经研究了我可以在互联网上找到什么,并总结了我下面的不同选项。哪一个是最好的候选人?
保存本地索引:
while processingdata:
index = 0
while index < len(somelist):
item = somelist[index]
dosomestuff(item)
if somecondition(item):
del somelist[index]
else:
index += 1
这是我想出的原始解决方案。不仅这不是很优雅,但我希望有更好的方法来做到这一点,保持时间和记忆效率。
向后走列表:
while processingdata:
for i in xrange(len(somelist) - 1, -1, -1):
dosomestuff(item)
if somecondition(somelist, i):
somelist.pop(i)
这避免了增加索引变量,但是最终与原始版本的成本相同。它还打破了dosomestuff(item)的逻辑,希望以与原始列表中出现的顺序相同的顺序处理它们。
制作新的列表:
while processingdata:
for i, item in enumerate(somelist):
dosomestuff(item)
newlist = []
for item in somelist:
if somecondition(item):
newlist.append(item)
somelist = newlist
gc.collect()
这是一个非常幼稚的策略,用于从列表中删除元素,并且需要大量内存,因为必须进行几乎完整的列表。
使用列表推导:
while processingdata:
for i, item in enumerate(somelist):
dosomestuff(item)
somelist[:] = [x for x in somelist if somecondition(x)]
这是非常优雅的,但覆盖范围更多的是整个列表,并且必须复制其中的大部分元素。我的直觉是,这个操作可能比原来的del语句成本更高,至少内存明智。请记住,系统可能是巨大的,每次运行一次只能迭代一次的任何解决方案可能总是会赢。
使用过滤功能:
while processingdata:
for i, item in enumerate(somelist):
dosomestuff(item)
somelist = filter(lambda x: not subtle_condition(x), somelist)
这也创建了一个占用大量RAM的新列表。
使用itertools的过滤器函数:
from itertools import ifilterfalse
while processingdata:
for item in itertools.ifilterfalse(somecondtion, somelist):
dosomestuff(item)
此版本的过滤器调用不会创建新列表,但不会在破坏算法逻辑的每个项目上调用dosomestuff。我仅仅是为了创建一个详尽的列表来包括这个例子。
在行走时将物品移动到列表中
while processingdata:
index = 0
for item in somelist:
dosomestuff(item)
if not somecondition(item):
somelist[index] = item
index += 1
del somelist[index:]
这是一种似乎具有成本效益的微妙方法。我认为它将移动每个项目(或每个项目的指针?)一次导致O(N)算法。最后,我希望Python将足够智能,最终调整列表的大小,而无需为列表的新副本分配内存。不确定。
放弃Python列表:
class Doubly_Linked_List:
def __init__(self):
self.first = None
self.last = None
self.n = 0
def __len__(self):
return self.n
def __iter__(self):
return DLLIter(self)
def iterator(self):
return self.__iter__()
def append(self, x):
x = DLLElement(x)
x.next = None
if self.last is None:
x.prev = None
self.last = x
self.first = x
self.n = 1
else:
x.prev = self.last
x.prev.next = x
self.last = x
self.n += 1
class DLLElement:
def __init__(self, x):
self.next = None
self.data = x
self.prev = None
class DLLIter:
etc...
这种类型的对象类似于python列表,有限的方式。然而,删除元素是保证O(1)。我不想去这里,因为这将需要大量的代码重构几乎无处不在。