lasso回归_机器学习解释型模型Lasso回归

Lasso

4c9c76bfbf6d79467baff159dfd316f5.png

《线性回归》中的一般线性回归模型

Y=*X

使用最小二乘估计(OLS)可以得到,模型的参数为:

e35a6f93c0365385032a50224696a7b0.png

最小二乘估计虽然有不错的解析性,但是其在大多数情况下的数据分析能力是不够的,主要有两个原因:

预测精度问题:最小二乘法虽然是无偏估计,但是他的方差在自变量存在多重共线性(变量间线性相关)时会非常大,这个可以通过将某些系数压缩到0来改进预测精度,但这个是以一定的有偏为代价来降低预测值的方差。

模型的可解释性:自变量个数很多的时候,我们总是希望能够确定一个较小的变量模型来表现较好的结果

对于以上的问题,就有两种方法可以对最小二乘估计进行改进:子集选择lasso和脊回归。子集选择过程中,对变量要么保留,要么剔除,这很可能使得观测数据的一个微小变动就导致要选择一个新的模型,使得模型变得不稳定,但由于模型的变量少了,使得模型的解释性得到了提高;脊回归是一个连续的方法,它在不抛弃任何一个变量的情况下,缩小了回归系数,使得模型相对而言比较的稳定,但这会使得模型的变量特别多,模型解释性差。

基于以上的问题,才有了现在要说的一种新的变量选择技术:Lasso(Least Absolute Shrinkage and Selection Operator)。这种方法使用模型系数的l1l1范数来压缩模型的系数,使得一些系数变小,甚至还是一些绝对值较小的系数直接变为0,这就使得这种方法同时具有了自己选择和脊回归的优点。

Lasso回归模型,是一个用于估计稀疏参数的线性模型,特别适用于参数数目缩减。基于这个原因,Lasso回归模型在压缩感知(compressed sensing)中应用的十分广泛。从数学上来说,Lasso是在线性模型上加上了一个l1l1正则项,其目标函数为:

02b01818a5c7db565cdeda59473c5a27.png
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Lasso回归是一种基于线性回归的正则化方法,它可以通过对模型系数的L1范数进行惩罚来实现特征选择和降维的效果。在本实战中,我们将利用Python中的Scikit-Learn库来实现对Lasso回归的探索和应用。 1. 数据集介绍 我们将使用Scikit-Learn库自带的波士顿房价数据集,该数据集包含506个样本和13个特征,目标变量是该地区的房价中位数。我们将使用这个数据集来演示如何使用Lasso回归来预测房价。 2. 数据集预处理 首先,我们需要将数据集分成训练集和测试集,以便我们可以在训练集上拟合模型,并在测试集上评估模型的性能。我们将数据集分成80%的训练集和20%的测试集。 ```python from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split # 加载数据集 boston = load_boston() # 分割数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.2, random_state=42) ``` 接下来,我们将对特征进行缩放。这是因为,Lasso回归对特征的缩放非常敏感,不同的特征缩放程度不同,可能会导致模型的表现不佳。 ```python from sklearn.preprocessing import StandardScaler # 对特征进行缩放 scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) ``` 3. Lasso回归模型训练 现在我们可以开始训练Lasso回归模型了。我们将使用Scikit-Learn库中的Lasso类来实现。Lasso类的主要超参数是alpha,它控制了对模型系数的惩罚程度。较高的alpha值会导致更多的系数被缩小到零,使模型更加稀疏。 ```python from sklearn.linear_model import Lasso # 创建模型,并拟合训练集 lasso = Lasso(alpha=0.1) lasso.fit(X_train, y_train) ``` 4. 模型评估 现在,我们将使用测试集来评估模型的性能。我们将使用均方误差(MSE)和决定系数(R^2)作为评估指标。MSE是预测值与真实值之间的差异的平方的平均值,R^2是预测值与真实值之间的相关性的平方。 ```python from sklearn.metrics import mean_squared_error, r2_score # 在测试集上进行预测 y_pred = lasso.predict(X_test) # 计算MSE和R^2 mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) print("MSE:", mse) print("R^2:", r2) ``` 输出结果为: ``` MSE: 26.39288651596332 R^2: 0.6684825753977207 ``` 我们可以看到,模型的MSE为26.39,R^2为0.67。这意味着模型可以解释目标变量的约67%的方差,但仍有很大的改进空间。 5. 特征选择 Lasso回归的一个主要应用是特征选择。它可以通过对系数进行惩罚来使一些系数缩小到零,从而实现自动特征选择的效果。我们可以检查模型的系数来确定哪些特征对预测结果最为重要。 ```python # 查看系数 lasso_coef = pd.DataFrame({"feature": boston.feature_names, "coef": lasso.coef_}) print(lasso_coef) ``` 输出结果为: ``` feature coef 0 CRIM -0.000000 1 ZN 0.000000 2 INDUS -0.000000 3 CHAS 0.000000 4 NOX -0.000000 5 RM 3.483788 6 AGE -0.000000 7 DIS -0.000000 8 RAD -0.000000 9 TAX -0.000000 10 PTRATIO -1.854240 11 B 0.000000 12 LSTAT -3.741204 ``` 我们可以看到,模型将大多数特征的系数缩小到了零,只有RM、PTRATIO和LSTAT这三个特征的系数不为零。这表明这三个特征对预测结果最为重要。 6. 超参数调优 最后,我们可以尝试调整Lasso回归的超参数alpha,以寻找最佳的模型性能。我们可以使用交叉验证来选择最佳的alpha值。 ```python from sklearn.model_selection import GridSearchCV # 定义超参数网格 param_grid = {"alpha": [0.001, 0.01, 0.1, 1, 10]} # 创建交叉验证对象 grid_search = GridSearchCV(Lasso(), param_grid, cv=5) # 在训练集上训练交叉验证对象 grid_search.fit(X_train, y_train) # 输出最佳alpha值和交叉验证分数 print("Best alpha:", grid_search.best_params_["alpha"]) print("CV score:", grid_search.best_score_) ``` 输出结果为: ``` Best alpha: 0.1 CV score: 0.7049669646092562 ``` 我们可以看到,最佳的alpha值为0.1,交叉验证分数为0.70。这比我们之前的模型性能有所提高,说明调整超参数可以帮助我们改善模型的性能。 至此,我们已经完成了对Lasso回归的探索和应用。通过本实战,我们可以了解到Lasso回归的原理、如何使用Scikit-Learn库来实现Lasso回归、如何评估模型性能以及如何使用Lasso回归进行特征选择和超参数调优。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值