SQL查询
-- 多索引统计查询
POST /_sql?format=txt
{
"query": """
SELECT COUNT(*) AS total,COUNT( rule_name) AS VALUE,rule_name AS NAME FROM "rule_log*,siem_log*" GROUP BY rule_name
"""
}
-- count 统计查询
POST /_sql?format=txt
{
"query": """
SELECT rule_name,count(1) FROM "rule_log*" GROUP BY rule_name
"""
}
-- 条件统计查询
POST /_sql?format=txt
{
"query": """
SELECT rule_name,log_model,COUNT(level.keyword = '严重' OR NULL) AS critical FROM rule_log GROUP BY rule_name,log_model
"""
}
-- list格式数据条件查询
POST /_sql?format=txt
{
"query": """
SELECT logSourceName,logSourceIp,logSourceCitypeName,count(1) FROM "siem-event-2024.08.21" where depart_uuid in('element1','element333') GROUP BY logSourceName,logSourceIp,logSourceCitypeName
"""
}
-- 时间格式化查询
POST /_sql?format=txt
{
"query": """
SELECT DATETIME_FORMAT("@timestamp",'yyyy-MM-dd') AS format_time,count(1) FROM "windows-log*" group by DATETIME_FORMAT("@timestamp",'yyyy-MM-dd') order by format_time desc
"""
}
聚合查询
ES常用的桶聚合如下:
Terms聚合 - 类似SQL的group by,根据字段唯一值分组
Histogram聚合 - 根据数值间隔分组,例如: 价格按100间隔分组,0、100、200、300等等
Date histogram聚合 - 根据时间间隔分组,例如:按月、按天、按小时分组
Range聚合 - 按数值范围分组
Elasticsearch 指标聚合(metrics)-函数
ES指标聚合,就是类似SQL的统计函数,指标聚合可以单独使用,也可以跟桶聚合一起使用。
常用的统计函数如下:
Value Count - 类似sql的count函数,统计总数
Cardinality - 类似SQL的count(DISTINCT 字段), 统计不重复的数据总数
Avg - 求平均值
Sum - 求和
Max - 求最大值
Min - 求最小值
POST rule_log/_search
{
"size": 1,
"aggs": {
"聚合名称": {
"terms": {
"field": "rule_name.keyword",
"size": 10,
"order": {
"_key": "desc"
}
},
"aggs" : {
"type_count" : {
"terms": {
"field" : "level.keyword"
}
}
}
}
}
}
POST windows-log-*/_search
{
"size": 1,
"query": {
"bool": {
"must": [
{"range": {
"@timestamp": {
"gte": "2024-08-15T16:51:38",
"lte": "2024-08-15T17:21:38"
}
}}
]
}
},
"aggs": {
"聚合名称": {
"terms": {
"field": "host.ip",
"size": 10,
"order": {
"_key": "desc"
}
},
"aggs" : {
"type_count" : {
"terms": {
"field" : "model_name"
}
}
}
}
}
}
GET /siem_log/_search
{
"size": 0,
"query": {
"bool": {
"filter": [
{}
]
}
},
"aggs": {
"date_histogram_aggs": {
"date_histogram": {
"field": "createTime",
"interval": "day",
"format": "yyyy-MM-dd",
"order": {
"_key": "desc"
}
}
}
}
}
POST siem_log/_search
{
"size": 0,
"aggs" : {
"login_time" : {
"date_histogram": {
"field" : "createTime" ,
"format": "yyyy-MM-dd",
"fixed_interval": "1d",
"offset": -28800000,
"order": {
"_key": "asc"
},
"keyed": false,
"min_doc_count": 0,
"extended_bounds": {
"min": "now/d",
"max": "now/d"
}
}
}
}
}
GET /sales/_search?size=0
{
"aggs": {
"types_count": { // 聚合查询的名字,随便取个名字
"value_count": { // 聚合类型为:value_count
"field": "type" // 计算type这个字段值的总数
}
}
}
}
等价SQL:
select count(type) from sales
java API(es sql 查询放方式)
package com.suninfo.common.divreport.esreport.execute;
import cn.hutool.db.sql.SqlBuilder;
import co.elastic.clients.elasticsearch.ElasticsearchClient;
import co.elastic.clients.elasticsearch.sql.QueryResponse;
import com.suninfo.common.divreport.chart.SChart;
import com.suninfo.common.divreport.esreport.esmapper.ESMapper;
import com.suninfo.common.divreport.esreport.esquery.ESQuery;
import com.suninfo.common.divreport.esreport.factory.ESMapperFactory;
import com.suninfo.common.divreport.report.QuerySql;
import lombok.extern.slf4j.Slf4j;
import org.springframework.util.ObjectUtils;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Set;
@Slf4j
public class ElasticExecute implements ESExecute {
private ESQuery esQuery;
private ElasticsearchClient esClient;
public ElasticExecute(ESQuery esQuery, ElasticsearchClient esClient) {
this.esQuery = esQuery;
this.esClient = esClient;
}
@Override
public List<SChart> execute() {
List<QuerySql> esQuerySqlList = esQuery.getEsSqlList();
List<SChart> sChartList = new ArrayList<>();
for (QuerySql querySql : esQuerySqlList) {
SqlBuilder sqlBuilder = querySql.getSqlBuilder();
// 上下文中设置当前的querySql
esQuery.getQueryContent().setCurrentQuerySql(querySql);
log.error("sql:{} {}", sqlBuilder.build(), sqlBuilder.getParamValues());
String sql = getExecuteSql(sqlBuilder);
QueryResponse queryResponse;
try {
queryResponse = esClient.sql().query(e -> e.query(sql));
} catch (IOException e) {
throw new RuntimeException(e);
}
ESMapper sMapper = ESMapperFactory.getSMapper(esQuery.getQueryContent());
SChart sChart = sMapper.toChart(queryResponse);
sChartList.add(sChart);
}
return sChartList;
}
private String getExecuteSql(SqlBuilder sqlBuilder){
String sql = sqlBuilder.build();
if (sql.contains("?")) {
for (Object paramValue : sqlBuilder.getParamValues()) {
if (sql.indexOf("?") != -1) {
sql = sql.substring(0, sql.indexOf("?")) + "\'" + paramValue + "\'" + sql.substring(sql.indexOf("?") + 1, sql.length());
}
}
}
return sql;
}
}
package org.jeecg.common.es;
import co.elastic.clients.elasticsearch._types.FieldValue;
import co.elastic.clients.elasticsearch._types.query_dsl.*;
import org.jeecg.common.system.vo.SysPermissionDataRuleModel;
import co.elastic.clients.json.JsonData;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
/**
* ES权限控制工具类
* Author: WangLiang
* Date: 2023/10/7 11:12
*/
public class ESDataPermissionUtil {
/**
* 根据提供的条件map和构造的query拼接过滤条件
*
* @param dataRoleMap
* @param boolQuery
*/
public static void addFilterRule(Map<String, List<SysPermissionDataRuleModel>> dataRoleMap, BoolQuery.Builder boolQuery) {
// 过滤数据权限
// 对拿到的数据进行分组,每一组之间用 and 分割,组内用 or 分割;
// 例: where (condition1 = x or condition2 < x or condition3 < x) and (condition4 = x or condition5 = x)
for (Map.Entry<String, List<SysPermissionDataRuleModel>> entry : dataRoleMap.entrySet()) {
BoolQuery.Builder boolGroupQuery = new BoolQuery.Builder();
List<SysPermissionDataRuleModel> dataList = entry.getValue();
List<Query> queryList = new ArrayList<>();
for (SysPermissionDataRuleModel model : dataList) {
queryList.add(ruleConvertFilter(model));
}
boolGroupQuery.should(queryList);
boolQuery.filter(f->f.bool(boolGroupQuery.build()));
}
}
/**
* 根据系统存入的数据过滤规则转换为ES的过滤规则
* @param model 系统model
* @return ES的query对象
*/
private static Query ruleConvertFilter(SysPermissionDataRuleModel model) {
String condition = model.getRuleConditions();
Query.Builder query = new Query.Builder();
if (condition.equals("=")) {
query.term(t -> t.field(model.getRuleColumn()).value(model.getRuleColumnvalue()));
} else if (condition.equals(">")) {
query.range(r -> r.field(model.getRuleColumn()).gt(JsonData.of(model.getRuleColumnvalue())));
} else if (condition.equals(">=")) {
query.range(r -> r.field(model.getRuleColumn()).gte(JsonData.of(model.getRuleColumnvalue())));
} else if (condition.equals("!=")) {
query.bool(q -> q.mustNot(m -> m.term(t -> t.field(model.getRuleColumn()).value(model.getRuleColumnvalue()))));
} else if (condition.equals("IN")) {
List<FieldValue> fields = new ArrayList<>();
String[] values = model.getRuleColumnvalue().split(",");
for (String value : values) {
fields.add(FieldValue.of(value));
}
query.terms(t -> t.field(model.getRuleColumnvalue()).terms(ms -> ms.value(fields)));
} else if (condition.equals("LIKE")) {
query.wildcard(m -> m.field(model.getRuleColumn()).value("*" + model.getRuleColumnvalue() + "*"));
} else if (condition.equals("LEFT_LIKE")) {
query.wildcard(m -> m.field(model.getRuleColumn()).value("*" + model.getRuleColumnvalue()));
} else if (condition.equals("RIGHT_LIKE")) {
query.wildcard(m -> m.field(model.getRuleColumn()).value(model.getRuleColumnvalue() + "*"));
} else if (condition.equals("<")) {
query.range(r -> r.field(model.getRuleColumn()).lt(JsonData.of(model.getRuleColumnvalue())));
} else if (condition.equals("<=")) {
query.range(r -> r.field(model.getRuleColumn()).lte(JsonData.of(model.getRuleColumnvalue())));
}
return query.build();
}
public void test(){
BoolQuery.Builder boolQuery = new BoolQuery.Builder();
boolQuery.must(
q -> q.term(m -> m.field("_index").value(searchConfig.getTableName()))
);
// 过滤权限条件
if( !ObjectUtils.isEmpty(searchConfig.getDataRole()) ){
Map<String, List<SysPermissionDataRuleModel>> dataRoleMap = searchConfig.getDataRole();
ESDataPermissionUtil.addFilterRule(dataRoleMap,boolQuery);
}
for (String singlekeyword :keywordarry) {
if (StringUtils.hasText(singlekeyword.trim())) {
boolQuery.must(
q -> q.multiMatch(multiMatchQueryBuilder -> multiMatchQueryBuilder
.fields(fdnamelist).query(singlekeyword.trim()).operator(Operator.Or).analyzer("ik_smart"))
);
}
}
}
}