matlab 降噪自编码器,深度有趣 | 05 自编码器图像去噪

本文介绍了如何使用Keras构建一个基于CNN的自编码器,用于图像去噪。通过训练,该模型能从加噪的MNIST手写数字图像中学习并重构原始图像,达到去噪目的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

自编码器(AutoEncoder)是深度学习中的一类无监督学习模型,由encoder和decoder两部分组成

encoder将原始表示编码成隐层表示

decoder将隐层表示解码成原始表示

训练目标为最小化重构误差

隐层特征维度一般低于原始特征维度,降维的同时学习更稠密更有意义的表示

自编码器主要是一种思想,encoder和decoder可以由全连接层、CNN或RNN等模型实现

以下使用Keras,用CNN实现自编码器,通过学习从加噪图片到原始图片的映射,完成图像去噪任务

49acd5442f8fdeee52271438bb99a4f9.png

准备

用到的数据是MNIST,手写数字识别数据集,Keras中自带

训练集5W条,测试集1W条,都是28*28的灰度图

这里我们用IPython写代码,因为有些地方需要交互地进行展示

在项目路径运行以下命令,启动IPython

jupyter notebook

加载库

# -*- coding: utf-8 -*-

from keras.datasets import mnist

import numpy as np

加载MNIST数据,不需要对应的标签,将像素值归一化到0至1,重塑为N*1*28*28的四维tensor,即张量,1表示颜色通道,即

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值