matlab进行图像降维,KLT降维与图像压缩(附MATLAB代码)

本文介绍了KLT(Karhunen-Loeve Transform)算法,用于图像降维和压缩。通过计算图像协方差矩阵,保留主要特征值和向量,实现数据的压缩。文章提供了MATLAB实现代码,并分析了保留不同数量特征值对重建图像质量的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KLT简述

KLT (Karhunen-Loeve Transform) 是变换编码 (Transform Coding) 的一种方法,它可以将数据转化为更利于压缩的一种形式,去除数据相关性形成的冗余。KLT通常也称为PCA (Principal Component Analysis) 或者EVD (Eigenvalue Decomposition), 在不一样的课程和教材中它们可能有一些差异,但本文将要讲的图像压缩中的KLT指的就是计算图像协方差矩阵,保留较大的特征值和其对应的特征向量的方法。html

步骤原理

首先将待处理的图像分割成n个M

×

N

M\times NM×N 的图像块,并将图像块中数据按照从左到右,从上到下的顺序从新排列成一个列向量,每个列向量长度为M

×

N

M\times NM×N,共有N

T

N_{T}NT​个这样的列向量,第i

ii个列向量为x

n

i

\bm{x}_{ni}xni​

以二维向量为例,假设每个向量能够表示为[

x

1

,

x

2

]

T

\left [x_1,x_2 \right ]^T[x1​,x2​]T,那么能够将这些数据点表示在二维平面内,以下图所示,椭圆内为二维向量分布点。web

1533529db45bc2b68657b31949592d42.png

数据中心化:x

=

x

n

i

x

ˉ

\bm{x}=\bm{x}_{ni}-\bar{\bm{x}}x=xni​−xˉ ,其中x

ˉ

\bar{\bm{x}}xˉ为全部列向量的均值。能够看做将数据集平移至原点。app

bdf583bb62695ee99a8b3975270d3070.png

计算协方差矩阵C

\bm{C}Cide

C

=

E

[

x

x

T

]

=

E

[

(

x

n

i

x

ˉ

)

(

x

n

i

x

ˉ

)

T

]

\bm{C}=E\left [\bm{x}\bm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值